Math, asked by Akanshasingh1316, 9 months ago

The cost of two cushions and three pillows is rupeas 1410.if each cushion costs 200 rupeas more than the pillow,find the cost of cushions and pillows

Answers

Answered by mddilshad11ab
85

\sf\large\underline{Given:}

\tt{\implies The\: cost\:_{(2\: cushion+3\: pillow)}=Rs.1410}

\sf\large\underline{To\: Find:}

\tt{\implies The\: cost\:_{(2\:cushion\:and\:3\:pillow\: separately)}=?}

\sf\large\underline{Solution:}

\tt{\implies Let,\:The\:cost\:_{(a\:pillow)}=x}

\tt{\implies The\:cost\:_{(a\: cushion)}=x+200}

\sf\small\underline{According\:to\: above\: information:}

\tt{\implies Cost\:_{(2\: cushion)}+Cost\:_{(3\:pillow)}=1410}

\tt{\implies 2(x+200)+3(x)=1410}

\tt{\implies 2x+400+3x=1410}

\tt{\implies 5x+400=1410}

\tt{\implies 5x=1410-400}

\tt{\implies 5x=1010}

\tt{\implies x=202}

\sf\large{Hence,}

\tt{\implies The\:cost\:_{(a\:cushion)}=(x+200)}

\tt{\implies The\:cost\:_{(a\: cushion)}=(202+200)}

\bf{\implies The\:cost\:_{(a\: cushion)}=Rs.402}

\tt{\implies The\:cost\:_{(a\: pillow)}=x}

\bf{\implies The\:cost\:_{(a\: pillow)}=Rs.202}

\sf\large\underline{Verification:}

\tt{\implies Cost\:_{(2\: cushion)}+Cost\:_{(3\:pillow)}=1410}

\tt{\implies 2(x+200)+3(x)=1410}

\tt{\implies 2(202+200)+3(202)=1410}

\tt{\implies 2(402)+3(202)=1410}

\tt{\implies 804+606=1410}

\tt{\implies 1410=1410}

\sf\large\underline{Hence,\: Verified:}

Answered by Anonymous
18

S O L U T I O N :

Let the cost of one pillow will be Rs.r

Let the cost of one cushions will be Rs.r + 200

\underbrace{\sf{According\:to\:the\:question\::}}}}

\longrightarrow\sf{2(r+200) + 3(r)=1410}\\\\\longrightarrow\sf{2r+400+3r=1410}\\\\\longrightarrow\sf{2r+3r+400=1410}\\\\\longrightarrow\sf{5r+400=1410}\\\\\longrightarrow\sf{5r=1410-400}\\\\\longrightarrow\sf{5r=1010}\\\\\longrightarrow\sf{r=\cancel{1010/5}}\\\\\longrightarrow\bf{r=Rs.202}

Thus;

The cost of one pillow is r = Rs.202.

The cost of one Cushions is (r+200) = Rs.(202 + 200) = Rs.402

Similar questions