Physics, asked by akshita3097, 1 year ago

The critical speed of'a satellite of mass 500 kg is 20 m/s.
What is the critical speed of a satellite of mass 1000 ks
moving in the same orbit?​

Answers

Answered by Sharad001
65

Question :-

→ Given above ↑

Answer :-

\to \sf \boxed{ \sf u = 20 \sqrt{2}  \:  \frac{m}{ {s}^{2} } } \:

❏ Solution :-

According to the question -

mass of satellite = 500 kg

velocity of this satellite ( v ) = 20 m/s

We know that

  \to  \: \sf \: v \:  =  \sqrt{ \frac{ \: G \: m}{r} }  \\  \\  \to \sf \: 20 =  \sqrt{ \frac{ \:G \:  \times 500 }{r} }  \\  \\ \bf squaring \: on \: both \: sides \\  \\  \to \sf 400 =  \frac{ \:G \times 500 }{r} \:   \\  \\  \to \sf r \:  = \:  \frac{500 \:  \times G \: }{400}  \\

Now ,

mass of another satellite = 1000 kg

orbit is same so that's why radius is same

hence ,

velocity of this satellite ( u) = ?

 \to \sf \: u = \sqrt{ \frac{ \: G \:  \times 1000}{r} }  \:  \\  \\  \to \sf \: u = \sqrt{ \frac{ \: G \:  \times 1000}{ \frac{500 \times G }{400} } }  \\  \\  \to \sf \: u \:  =  \sqrt{ \frac{40 \times 1000}{500} }  \\  \\  \to \sf u =  \sqrt{800}  \\  \\  \to \sf \boxed{ \sf u = 20 \sqrt{2}  \:  \frac{m}{ {s}^{2} } }

Hope it helps you .

Similar questions