The current flowing through a resistor R varies as I= kt , where k is constant. Find the rms current for first 2 seconds.
Answers
RMS CURRENT for t = 2 sec :
Hope It Helps.
Explanation:
RMS CURRENT for t = 2 sec :
\: i_{RMS} = \sqrt{ \frac{ \displaystyle\int_{0}^{2} {i}^{2}dt }{ \displaystyle\int_{0}^{2}dt} }i
RMS
=
∫
0
2
dt
∫
0
2
i
2
dt
\implies i_{RMS} = \sqrt{ \frac{ \displaystyle\int_{0}^{2} {(kt)}^{2}dt }{ \displaystyle\int_{0}^{2}dt} }⟹i
RMS
=
∫
0
2
dt
∫
0
2
(kt)
2
dt
\implies i_{RMS} =k \sqrt{ \frac{ \displaystyle\int_{0}^{2} {t}^{2} dt }{ \displaystyle\int_{0}^{2}dt} }⟹i
RMS
=k
∫
0
2
dt
∫
0
2
t
2
dt
\implies i_{RMS} =k \sqrt{ \dfrac{ \displaystyle \frac{ {t}^{3} }{3} \bigg | _{0}^{2} }{ 2 - 0} }⟹i
RMS
=k
2−0
3
t
3
∣
∣
∣
∣
∣
0
2
\implies i_{RMS} =k \sqrt{ \dfrac{ \displaystyle (\frac{ 8}{3}) }{ 2 } }⟹i
RMS
=k
2
(
3
8
)
\implies i_{RMS} =k \sqrt{ \dfrac{4 }{3}}⟹i
RMS
=k
3
4
\boxed{ \implies i_{RMS} = \dfrac{2k}{ \sqrt{3} } \: units}
⟹i
RMS
=
3
2k
units