The
Curve
3x
+ xy- y² +4y-3=0 and the line
y = 2(1-x) intersect at
at the points A and B
Find the coordinates of A and of p
Answers
Answer:
Equation of the curve = 3x² + xy - y² + 4y - 3 = 0 ...(1)
Equation of the line = y = 2 ( 1 - x ) ⇒ 2 - 2x ... (2)
Substituting value of y from (2) in (1) we get:
⇒ 3x² + x ( 2 - 2x ) - ( 2 - 2x )² + 4 ( 2 - 2x ) - 3 = 0
⇒ 3x² + 2x - 2x² - [ 4 + 4x² - 8x ] + 8 - 8x - 3 = 0
⇒ 3x² - 2x² + 2x - 4 - 4x² + 8x + 8 - 8x - 3 = 0
⇒ 3x² - 2x² - 4x² + 8x - 8x + 2x + 8 - 4 - 3 = 0
⇒ - 3x² + 2x + 1 = 0
⇒ -3x² + 3x - x + 1 = 0
⇒ 3x ( - x + 1 ) + 1 ( - x + 1 ) = 0
⇒ ( 3x + 1 ) ( - x + 1 ) = 0
⇒ x = -1/3, 1
Hence if x is -1/3, then y would be:
⇒ y = 2 - 2 ( -1/3)
⇒ y = 2 + 2/3
⇒ y = 8/3
If x is 1, then y would be:
⇒ y = 2 - 2 ( 1 )
⇒ y = 0
Hence the two points are ( -1/3, 8/3 ) and ( 0,1 )
(Refer to the attachment for graph)
Step-by-step explanation:
Aloha !
Given ,
3x²+xy-y²+4y-3=0 let it be eq- 1
y=2(1-x)
y=2-2x let it be eq- 2
Replacing y value in eq-1 ,
3x²+x(2-2x)-(2-2x)²+4(2-2x)-3=0
3x²+2x-2x²-(4+4x²-8x)+8-8x-3=0
3x²+2x-2x²-4-4x²+8x+8-8x-3=0
-3x²+2x+1=0
-3x²+3x-x+1=0
3x(-x+1)+1(-x+1)=0
(-x+1)(3x+1)=0
-x+1=0 & 3x+1=0
-x=-1 & 3x= -1
x= 1 & x= -⅓
Replacing any value of x in eq-2
If x=1
y=2-2x
y=2-2(1)
y=2-2
y=0
So, (x,y)= (1,0)
If x= -⅓
y=2-2x
y= 2-2(-⅓)
y= 2+⅔
y= 2×3+2÷ 3
y= 8/3
So, (x,y) = (-⅓ , 8/3)