Math, asked by Anania, 1 year ago

The curved surface area of a cylinder is 1210 cm² and it's diameter is 20 cm. Find it's height and volume.

Answers

Answered by Anonymous
7

ANSWER:-

Given:

The curved surface area of a cylinder is 1210cm².

It's diameter is 20cm.

To find:

Find it's height & volume.

Solution:

We know that, curved surface area of a cylinder;

=) 2πrh

⚫Radius= 20/2 = 10cm

Now,

 =  > 2 \times  \frac{22}{7}  \times 10 \times h = 1210 \\  \\  =  >  \frac{44}{7}  \times 10 \times h = 1210 \\  \\  =  > h =  \frac{1210 \times 7}{44 \times 10}  \\  \\  =  > h =  \frac{77}{4} cm

Therefore,

Volume of a cylinder is πr²h.

 =  >  \frac{22}{7}  \times 10 \times 10 \times  \frac{77}{4}  \\  \\  =  >  \frac{22}{7}   \times 100 \times  \frac{77}{4}  \\  \\  =  >( 22 \times 25 \times 11) {cm}^{3}  \\  \\  =  > 6050 {cm}^{3}

Thus,

⚫Height of a cylinder is 77/4cm

⚫Volume of a cylinder is 6050cm³.

Hope it helps ☺️

Answered by Anonymous
21

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The height of cylinder = 19.25 Cm
  • The volume of cylinder = 6050 Cm³

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The curved surface area of a cylinder is 1210 cm² and it's diameter is 20 cm.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The height of cylinder = ?
  • The volume of cylinder = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: We\:know\: that:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Radius = \frac{Diameter}{2} } \\\\

\sf\underline{\orange{\:\:\: Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Radius = \dfrac{\cancel{20}}{\cancel{2}}\:} \\\\

\dashrightarrow \sf {Radius = 10\:Cm} \\\\

\rule{200}{2}

\dag In First Situation:

\sf\underline{\green{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The height of cylinder = ?

\sf\underline{\red{\:\:\: Formula\:used\: here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Curved \:surface\: area\: of \:a \:cylinder = 2\pi rh } \\\\

\sf\underline{\red{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {2 \times \frac{22}{7} \times 10 \times Height = 1210} \\\\

\dashrightarrow \sf {\frac{44}{7} \times 10 \times Height = 1210} \\\\

\dashrightarrow \sf {Height = 1210 \times \frac{7}{440} } \\\\

\dashrightarrow \sf {Height = \dfrac{\cancel{8470}}{\cancel{440}}\ }\\\\

\dashrightarrow \sf {Height = 19.25\:Cm} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • The height of cylinder is 19.25 Cm.

\rule{200}{2}

\dag In Second Situation:

\sf\underline{\green{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The volume of cylinder = ?

\sf\underline{\red{\:\:\: Formula\:used\: here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Volume\:of \:a \:cylinder = \pi r^2h } \\\\

\sf\underline{\red{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Volume = \frac{22}{7} \times 10 \times 10 \times 19.25} \\\\

\dashrightarrow \sf {Volume = \frac{2200 \times 19.25}{7} } \\\\

\dashrightarrow \sf {Volume = \dfrac{\cancel{42350}}{\cancel{7}}\ }\\\\

\dashrightarrow \sf {Volume = 6050\:Cm^3} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • The volume of cylinder is 6050 Cm³.

\rule{200}{2}

Similar questions