Math, asked by sharukh4605, 17 days ago

the curved surface area of a cylinder is 1760cm2 ,its volume 12320cm3 find its radius

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of cylinder = r cm

  • Height of cylinder = h cm

Given that,

  • Curved Surface Area of cylinder = 1760 sq. cm

We know, Curved Surface Area of cylinder of radius r and height h is given by

\boxed{ \rm{ \:CSA_{(Cylinder)} \:  =  \: 2 \: \pi \: r \: h \: }} \\

So, we have

\rm \:  2 \: \pi \: r \: h \:  =  \: 1760 \:  {cm}^{2} -  -  - (1)  \\

Further given that

  • Volume of cylinder = 12320 cu. cm

We know, Volume of cylinder of radius r and height h is given by

\boxed{ \rm{ \:Volume_{(Cylinder)} = \pi \:  {r}^{2} \: h \:  \: }} \\

So, we have

\rm \: \pi \:  {r}^{2} \: h \:  =  \: 12320 -  -  - (2) \\

On dividing equation (2) by (1), we get

\rm \: \dfrac{\pi \:  {r}^{2} \: h}{2 \: \pi \: r \: h}  = \dfrac{12320}{1760}  \\

\rm \: \dfrac{r}{2}  = 7 \\

\rm\implies \:r \:  =  \: 14 \: cm \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions