Math, asked by vedantsoni0909, 14 hours ago

the curved surface area of a cylinder is 3960cm2 and the circumference of its of its base is 132cm find the volume of cylinder​

Answers

Answered by Anonymous
2

Step-by-step explanation:

Let 'r' be the radius of the cylinder. Circumference=132cm

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2×

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r=

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cm

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h=

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21)

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25=

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 7

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 722

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 722 ×21×21×25=34,650cm

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 722 ×21×21×25=34,650cm 3

Let 'r' be the radius of the cylinder. Circumference=132cm2πr=132cm2× 722 ×r=132cm∴r= 2×22132cm×7 ∴r=21cmVolume of a cylinder=πr 2 h= 722 ×(21) 2 ×25= 722 ×21×21×25=34,650cm 3 .

Similar questions