The curved surface area of a cylindrical pillar is 264 m^2 and its volume is 924 m^3. The height of the pillar is
Answers
where,
Given that,
and
Now, Divide equation (1) by equation (2), we get
On substituting the value of 'r' in equation (2), we get
Additional Information :-
Perimeter of rectangle = 2(length× breadth)
Diagonal of rectangle = √(length²+breadth²)
Area of square = side²
Perimeter of square = 4× side
Volume of cylinder = πr²h
T.S.A of cylinder = 2πrh + 2πr²
Volume of cone = ⅓ πr²h
C.S.A of cone = πrl
T.S.A of cone = πrl + πr²
Volume of cuboid = l × b × h
C.S.A of cuboid = 2(l + b)h
T.S.A of cuboid = 2(lb + bh + lh)
C.S.A of cube = 4a²
T.S.A of cube = 6a²
Volume of cube = a³
Volume of sphere = 4/3πr³
Surface area of sphere = 4πr²
Volume of hemisphere = ⅔ πr³
C.S.A of hemisphere = 2πr²
T.S.A of hemisphere = 3πr²
where,
Solution−
Given that,
and
Now, Divide equation (1) by equation (2), we get
On substituting the value of 'r' in equation (2), we get
Perimeter of rectangle = 2(length× breadth)
Diagonal of rectangle = √(length²+breadth²)
Area of square = side²
Perimeter of square = 4× side
Volume of cylinder = πr²h
T.S.A of cylinder = 2πrh + 2πr²
Volume of cone = ⅓ πr²h
C.S.A of cone = πrl
T.S.A of cone = πrl + πr²
Volume of cuboid = l × b × h
C.S.A of cuboid = 2(l + b)h
T.S.A of cuboid = 2(lb + bh + lh)
C.S.A of cube = 4a²
T.S.A of cube = 6a²
Volume of cube = a³
Volume of sphere = 4/3πr³
Surface area of sphere = 4πr²
Volume of hemisphere = ⅔ πr³
C.S.A of hemisphere = 2πr²
T.S.A of hemisphere = 3πr²