Math, asked by madamalamukeshnadh, 1 month ago

The curved surface area of a cylindrical pillar is 264m and its volume is 924m. The height of the pillar is​

Answers

Answered by ojaskate23
0

hope it's helpful for you

Attachments:
Answered by EliteZeal
8

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • The curved surface area of a cylindrical pillar is 264 sq. m
  • Volume of a cylindrical pillar is 924 cu. m

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • The height of the pillar

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

We know that ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Curved surface area of cylinder :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ A = 2πrh

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Where ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • A = Curved surface area of cylinder
  • r = Radius of cylinder
  • h = Height of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{ \underline{\bold{\texttt{Curved surface area of given cylindrical pillar :}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • A = 264 sq. m
  • r = r
  • h = h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Putting the values

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ A = 2πrh

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 264 = 2πrh

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf r = \dfrac { 264 } { 2 \pi h} ⚊⚊⚊⚊ ⓵

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder :}}}}}} ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ V = πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Where ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • V = Volume of cylinder
  • r = Radius of cylinder
  • h = Height of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{ \underline{\bold{\texttt{Volume of given cylindrical pillar :}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • V = 924 cu. m
  • r = r
  • h = h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Putting the values

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ 924 = πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf r = \sqrt { \dfrac { 924 } { \pi h }} ⚊⚊⚊⚊ ⓶

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Clearly , Equation ⓵ = Equation ⓶

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \dfrac { 264 } { 2 \pi h} = \sqrt { \dfrac { 924 } { \pi h }}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Squaring both sides

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 264 } { 2 \pi h}\bigg)^2 = \bigg(\sqrt { \dfrac { 924 } { \pi h }}\bigg)^2

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 264 \times 264}{ 4 \pi^2 h^2}\bigg)= \bigg(\dfrac { 924 }{ \pi h}\bigg)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 264 \times 264} { 4 \pi h}\bigg)= \bigg( \dfrac { 924 } {1 }\bigg)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 264 \times 264} { 4 \times 924}\bigg)= \bigg( \dfrac {  h \pi} {1 }\bigg)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 22 \times 66} { 77}\bigg) = \bigg( \dfrac { h \pi} {1 }\bigg)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 22 \times 6} { 7}\bigg) \dfrac { 1 } { \pi} = h \pi

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \bigg(\dfrac { 22 \times 6} { 7}\bigg) \dfrac { 7 } { 22} = h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf 6 = h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: : ➨ h = 6

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • Hence the height of cylindrical pillar is 6 m
Similar questions