Math, asked by raip60629, 23 hours ago

the curved surface area of cylinder is 2200cm3 if its radius is 10cm ,then its height is ___cm.​

Answers

Answered by raghavaggarwal0702
2

Answer:

2\pi r h= 2200cm^{3} \\2*\frac{22}{7}*10*h=2200cm^{3}\\h=2200*\frac{1}{2}*\frac{7}{22}\\h=350 cm

hope it helps you

Answered by Anonymous
4

Answer:

Given :

  • Curved surface area of cylinder = 2200 cm².
  • Radius of cylinder = 10 cm.

\begin{gathered}\end{gathered}

To Find :

  • Height of cylinder

\begin{gathered}\end{gathered}

Using Formula :

{\longrightarrow{\purple{\underline{\boxed{\sf{CSA \:  of \:  cylinder = 2\pi  rh}}}}}}

  • CSA = Curved surface area
  • π = 22/7
  • r = radius
  • h = height

\begin{gathered}\end{gathered}

Solution :

★ Finding the height of cylinder by substituting the values in the formula :

{\longrightarrow{\sf{CSA \:  of \:  cylinder = 2\pi  rh}}}

{\longrightarrow{\sf{2200 = 2 \times \dfrac{22}{7} \times 10 \times  h}}}

{\longrightarrow{\sf{2200 = \dfrac{2 \times 22}{7} \times 10 \times  h}}}

{\longrightarrow{\sf{2200 = \dfrac{44}{7} \times 10 \times  h}}}

{\longrightarrow{\sf{2200 = \dfrac{44 \times 10}{7}\times  h}}}

{\longrightarrow{\sf{2200 = \dfrac{440}{7}\times  h}}}

{\longrightarrow{\sf{h =  2200 \times \dfrac{7}{440}}}}

{\longrightarrow{\sf{h =  \cancel{2200} \times \dfrac{7}{\cancel{440}}}}}

{\longrightarrow{\sf{h = 5 \times 7}}}

{\longrightarrow{\sf{h = 35 \: cm}}}

{\bigstar{\red{\underline{\boxed{\sf{Height = 35 \: cm}}}}}}

Hence, the height of cylinder is 35 cm.

\begin{gathered}\end{gathered}

Vefication :

★ Let's check our answer by substituting all values in the formula :

{\longrightarrow{\sf{CSA \:  of \:  cylinder = 2\pi  rh}}}

{\longrightarrow{\sf{2200 = 2 \times \dfrac{22}{7} \times 10 \times  35}}}

{\longrightarrow{\sf{2200 = \dfrac{2 \times 22}{7} \times 350}}}

{\longrightarrow{\sf{2200 = \dfrac{44}{7} \times 350}}}

{\longrightarrow{\sf{2200 = \dfrac{44}{\cancel{7}}\times \cancel{350}}}}

{\longrightarrow{\sf{2200 = 44 \times 50}}}

{\longrightarrow{\sf{2200 \:  {cm}^{2}  = 2200 \:  {cm}^{2} }}}

{\bigstar{\red{\underline{\boxed{\sf{LHS = RHS}}}}}}

Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}

\rule{220pt}{3pt}

Similar questions