Physics, asked by nesarhussain7166, 11 months ago

The de broglie wavelength associated with an electron is moving with a speed of 5.4×10^6m/s

Answers

Answered by ShivamKashyap08
21

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

Mass of electron (m) = {9.1 × 10^{-31} \: Kg}

Velocity of electron (v) = {5.4 × 10^6 \: m/s}

\huge{\bold{\underline{Explanation:-}}}

As we know,

\large{\bold{ \lambda = \frac{h}{mv}}}

Here "h" is Planck's constant which has value of \large{6.6 \times 10^{-34 }\: m^2Kg/s}

Substituting the values,

\large{ \implies \lambda =  \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 5.4 \times 10^6}}

\large{ \implies \lambda =  \frac{6.6 \times 10^{-34}}{9.1 \times 5.4  \times 10^{-31 + 6}}}

\large{ \implies \lambda = \frac{6.6 \times 10^{-34}}{49.14 \times 10^{-25}}}

\large{ \implies \lambda = \frac{6.6}{49.14} \times 10^{ -34 + 25}}

\large{ \implies \lambda = 0.13 \times 10^{-9}}

\huge{\boxed{\boxed{ \lambda = 1.3 \times 10^{-10} \: m}}}

Some More Formulas:-

\large{ \lambda = \frac{h}{p}}

\large{ \lambda = \frac{h}{ \sqrt{2(K.E)m}}}

\large{ \lambda = \frac{h}{ \sqrt{2meV}}}

Here,

P = Linear momentum.

V = Potential difference.

e = Charge of electron.

K.E = Kinetic energy of electron.

m = mass of electron.

Answered by lAravindReddyl
9

Answer:-

\bold{\lambda = 1.25 \times 10^{-10}m} = 1.25 \times 10^-20  A\degree

Explanation:-

Given:-

V = 5.4 \times 10^6

To Find:-

De-broglie wavelength( \lambda)

Solution:-

W.k.t,

\boxed{\bold{\lambda = \dfrac{h}{mv} }}

{\rightarrow}\lambda = \dfrac{6.625 \times 10^-34}{9.11 \times 10^-31  \times 5.4 \times 10^6}

{\rightarrow}\lambda = \dfrac{6.625 \times 10^{-34+31-6}}{9.11   \times 5.4  }

{\rightarrow}\lambda = \dfrac{6.625 \times 10^{-9}}{49.194}

{\rightarrow}\lambda = \dfrac{10^{-9}}{8}

{\rightarrow}\lambda = 0.125 \times 10^{-9}

{\rightarrow}\lambda = 1.25 \times 10^{-10}m

Note:-

{\rightarrow}planck's \: constant (h)= 6.625 \times 10^{-34} \: Js

{\rightarrow}mass \: of \: electron (m)= 9.11 \times 10^{-31} \: kg

{\rightarrow}1\:  metre= 10^{-10} A\degree

Similar questions