The de broglie wavelength of an electron moving with a velocity 1.5
Answers
Answer:
The de Broglie wavelength for electron = \lambda = h/p = c/\nuλ=h/p=c/ν
Given \lambda_e = \lambda_pλ
e
=λ
p
KE of electron = 1/2 \times m \times v^2 = 1/2 \times p \times v_e1/2×m×v
2
=1/2×p×v
e
Substituting for p in the above equation, we get
K.E of electron : \dfrac{hv_e}{2\lambda_e}
2λ
e
hv
e
\therefore \lambda_e = \cfrac{h \times v_e}{2 \times KE_e}∴λ
e
=
2×KE
e
h×v
e
The K.E of photon is given by : \dfrac{hc}{\lambda_p}
λ
p
hc
\therefore \lambda_p = \cfrac{h \times c}{ KE_p}∴λ
p
=
KE
p
h×c
Given that the wavelengths are equal .
Taking ratio we get : \dfrac{v_e}{2 \times KE_e}
2×KE
e
v
e
= \dfrac{c}{KE_p}
KE
p
c
Then,
\dfrac{KE_p}{KE_e} = \dfrac {2 \times c}{v_e} =
KE
e
KE
p
=
v
e
2×c
= \dfrac{2 \times 3 \times 10 ^8}{1.5 \times 10^8} = 4
1.5×10
8
2×3×10
8
= 4