The degree of a quotient on division of () by a polynomial in x of degree 5 is
a) 2
b) 3
c) 1
d) 0
Answers
Answer:
whenever we divide a polynomial x6 + 2x3 + x -1 by a polynomial in x of degree 5, then we get quotient always as in linear form i.e., polynomial in x of degree 1. Let divisor = a polynomial in x of degree 5
= ax5 + bx4 + cx3 + dx2 + ex + f
quotient = x2 -1
and dividend = x6 + 2x3 + x -1
By division algorithm for polynomials,
Dividend = Divisor x Quotient + Remainder
= (ax5 + bx4 + cx3 + dx2 + ex + f)x(x2 -1) + Remainder
= (a polynomial of degree 7) + Remainder
[in division algorithm, degree of divisor > degree of remainder]
= (a polynomial of degree 7)
But dividend = a polynomial of degree 6
So, division algorithm is not satisfied.
Hence, x2 -1 is not a required quotient.
Answer:
The degree of a quotient on division ofby a polynomial in x of degree 5 is
Option D. 0
- hope it helps you...
- please mark it as a brainlist answer...
- also please rate thanks and follow me...
- stay home STAY SAFE....