Math, asked by sohaibabdul022, 3 months ago

The degree of the polynomial

Answers

Answered by varnekasabari
0

A polynomial’s degree is the highest or the greatest power of a variable in a polynomial equation. The degree indicates the highest exponential power in the polynomial (ignoring the coefficients).

For example: 6x4 + 2x3+ 3 is a polynomial.  Here 6x4, 2x3, 3 are the terms where 6x4 is a leading term and 3 is a constant term. The coefficients of the polynomial are 6 and 2.

For example: 6x4 + 2x3+ 3 is a polynomial.  Here 6x4, 2x3, 3 are the terms where 6x4 is a leading term and 3 is a constant term. The coefficients of the polynomial are 6 and 2. Eg : The degree of the polynomial 6x4 + 2x3+ 3 is 4.

Let’s consider a polynomial expression with two variables, say x and y

(i.e) x3 + 6x2y4 + 3y2+5

The degree of the polynomial is 6.

Because in the second term of the algebraic expression,  6x2y4, the exponent values of x and y are 2 and 4 respectively. When the exponent values are added, we get 6. Hence, the degree of the multivariable polynomial expression is 6.

So, if “a” and “b” are the exponents or the powers of the variable, then the degree of the polynomial should be “a + b”, where “a” and “b” are the whole numbers.

Hope this answer is helpful to you :D

Similar questions