Math, asked by mini18903, 1 year ago

the denominator of a fraction is 4 more than twice its numerator if 6 is subtracted from both the numerator and the denominator the denominator becomes 12 times the numerator find the fraction​

Answers

Answered by Stylishboyyyyyyy
14

\Large{ \mathfrak{ \underline{ Question : }}} \\  \\ \sf The \:  denominator  \: of \:  fraction  \: is  \: 4   \\  \sf more \:  than  \: twice. \:  The  \: numerator   \\  \sf and  \: denominator \:  are  \: decreased \:  by  \\  \sf  6  \: then  \: the \:  denominator  \: becomes   \\  \sf 12 \:  times  \: the \:  numerator.  \: Find   \\  \sf the  \: fraction. \\  \\ \Large{ \mathfrak{ \underline{ Answer : }}} \\  \\   \overline { \underline{ \: \:  \boxed{\sf Fraction =  \frac{7}{18} } \:  \: }}   \\  \\ \Large{ \mathfrak{ \underline{ Solution : }}} \\  \\ \textsf{Let the Numerator be x.} \\ \therefore \textsf{Denominator = 2x + 4} \\ \\ \sf \underline{ATQ, \: We \: have} \\ \qquad \rm \implies 12(x - 6) = 2x + 4 - 6 \\ \qquad \rm \implies 12x - 72 = 2x - 2 \\  \qquad \rm \implies 12x - 2x = 72 - 2 \\  \qquad \rm \implies 10x = 70 \\  \qquad \rm \implies x =  \frac{7 \cancel0}{1 \cancel0}  \\  \qquad \rm \implies x = 7 \\  \\ \boxed{ \mathfrak{ Numerator =  \boxed{7}}} \\ \boxed{ \mathfrak{ Denominator = 2 \times 7 + 4 =  \boxed{18}}} \\  \\ \sf Fraction \\  \qquad \sf =  \frac{Numerator}{Denominator}  \\  \sf \qquad   =  \large \boxed{ \sf\frac{7}{18}}

Similar questions