Math, asked by tsaurav542, 2 months ago

the denominator of a fraction is 4more than it twice the number when the numerator and denominator are decreased by 6 then denominator become 12time of number determine the fraction​

Answers

Answered by varadad25
7

Answer:

\displaystyle{\boxed{\red{\sf\:The\:fraction\:=\:\dfrac{7}{18}}}}

Step-by-step-explanation:

Let the numerator of the fraction be x.

And the denominator of the fraction be y.

\displaystyle{\sf\therefore\:The\:fraction\:=\:\dfrac{x}{y}}

From the first condition,

y = 2x + 4 \qquad - - - ( 1 )

From the second condition,

( y - 6 ) = 12 ( x - 6 )

⇒ ( 2x + 4 - 6 ) = 12x - 72

⇒ 2x - 2 = 12x - 72

⇒ - 2 + 72 = 12x - 2x

⇒ 10x = 70

\displaystyle{\implies\sf\:x\:=\:\cancel{\dfrac{70}{10}}}

\displaystyle{\implies\boxed{\blue{\sf\:x\:=\:7\:}}}

By substituting x = 7 in equation ( 1 ), we get,

y = 2x + 4 \qquad - - - ( 1 )

⇒ y = 2 * 7 + 4

⇒ y = 14 + 4

\displaystyle{\implies\boxed{\pink{\sf\:y\:=\:18}}}

Now,

\displaystyle{\sf\:The\:fraction\:=\:\dfrac{x}{y}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:The\:fraction\:=\:\dfrac{7}{18}}}}}

Answered by jaswasri2006
1

Let the numerator of the fraction be x.

And the denominator of the fraction be y.

 \\  \\

\large \tt the \:  \: fraction \:  \:  =  \frac{x}{y}

 \\  \\

From the first condition,

y = 2x + 4 ____ ( 1 )

From the second condition,

( y - 6 ) = 12 ( x - 6 )

⇒ ( 2x + 4 - 6 ) = 12x - 72

⇒ 2x - 2 = 12x - 72

⇒ - 2 + 72 = 12x - 2x

⇒ 10x = 70

⇒ x = 7

 \\  \\

By substituting x = 7 in equation ( 1 ), we get,

y = 2x + 4 _____( 1 )

⇒ y = 2 * 7 + 4

⇒ y = 14 + 4

⇒ y = 18

 \\  \\  \\

 \Large \tt  \green\ddag \:   \:  The  \:  \:  \:  Fraction  \:  \: is \:  \:   \:  \color{orange} \frac{7}{18}

Similar questions