Math, asked by AnanyaGabbur, 1 year ago

the denominator of a fraction is one more than twice its numerator if the sum of the fraction and its reciprocal is 2 16/21 find the fraction

Answers

Answered by AJAYMAHICH
17
let the numerator be 'x' then denominator is'2x+1'

given="x / 2x+1" + "2x+1/x"=2 16/21

then="x / 2x+1" + "2x+1/x"=58/21

=x(x)+2x+1(2x+1) / 2x+1(x=58/21

=x2+(2x+1)2  / 2x2+x=58/21

=x2+4x2+4x+1 / 2x2+x=58/21

=5x2 +4x+1 / 2x2+x=58/21

=5x2 +4x+1(21)=58(2x2+x)

=105x2 +84x+21=116x2 +58x

=116x2 +58x-105x2 -84x-21=0

=11x2 - 26x-21=0

by solving using x= -(b)+rootb2 -4ac /2a

we get x=3 so the fraction is 3/7

check

3/7 +7/3 =49 +9 /21=58 /21

hence verified


rajusaha10: tu apni maa se pus ki mummy bare se kese bihave karna sahiye nonsense you rrr mentel study IIT don no to respect nonsense
rajusaha10: i study the college life also mentel iii no how to study and respect
AJAYMAHICH: tum pucho jaake mera dimag mt kharab kro
rajusaha10: oi maksudu tuk kela gharot kati pelam kela set by by
rajusaha10: tu kaha se ho
AJAYMAHICH: ab jao yhan se girls ki respect kr rha hu isliye me kuch nhi bol rha hu
rajusaha10: sup by by and i love you darling
rajusaha10: sorry eer iit students you rrr my friend by by
AnanyaGabbur: guys it's a comment box........ please stop it too
Koushe: what's happening huff!
Answered by mathdude500
2

Question :-

The denominator of a fraction is 1 more than twice its numerator. If the sum of fraction and its reciprocal is 2\frac{16}{21}  , find the fraction.

\large\underline{\sf{Solution-}}

Let assume that

Numerator of a fraction be x.

So,

Denominator of a fraction be 1 + 2x

Thus,

\sf \: Fraction =  \dfrac{x}{1 + 2x}  \\  \\

According to statement, sum of fraction and its reciprocal is 2\frac{16}{21}  .

So,

\sf \: \dfrac{x}{1 + 2x} +  \dfrac{2x + 1}{x} = 2 \dfrac{16}{21}    \\  \\

\sf \: \dfrac{ {x}^{2}  +  {(2x + 1)}^{2} }{(1 + 2x)x}  =  \dfrac{58}{21}    \\  \\

\sf \: \dfrac{ {x}^{2}  +   {4x}^{2} + 4x + 1}{x + 2 {x}^{2} }  =  \dfrac{58}{21}    \\  \\

\sf \: \dfrac{{5x}^{2} + 4x + 1}{x + 2 {x}^{2} }  =  \dfrac{58}{21}    \\  \\

\sf \: 58( {2x}^{2} + x) = 21( {5x}^{2} + 4x + 1) \\  \\

\sf \:  {116x}^{2} + 58x ={105x}^{2} + 84x + 21\\  \\

\sf \:  {116x}^{2} + 58x - {105x}^{2} -  84x  - 21 = 0\\  \\

\sf \:  {11x}^{2} - 26x  - 21 = 0\\  \\

\sf \:  {11x}^{2} - 33x + 7x  - 21 = 0\\  \\

\sf \: 11x(x - 3) + 7(x - 3) = 0 \\  \\

\sf \: (x - 3)(11x + 7) = 0 \\  \\

\sf \:  \implies \: x = 3 \:  \:  \: or \:  \:  \: x =  -  \dfrac{7}{11} \:  \{rejected \} \\  \\

Thus,

\sf \: \sf \:  \implies \: Fraction =  \dfrac{x}{1 + 2x}  =  \frac{3}{7}  \\  \\

Hence,

\implies\sf \: \boxed{\sf \: Fraction =  \dfrac{3}{7} \: } \\

Similar questions