Math, asked by daksh8733, 1 year ago

the denominator of a rational number is greater than its numerator by 6 if the numerator is increased by 5 and denominator is decreased by 3 denominator obtained is equal to 5/4 find the rational number

Answers

Answered by Littlenap
2

Answer:5/11


Step-by-step explanation:


Attachments:
Answered by nilesh102
4

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\   \tt{  \underline\red{given} :  - } \\ \tt{\red{a.} }\tt{  \underline\purple{the  \: denominator  \: of  \: a \:  rational }} \\  \tt{ \underline \purple{number \:  is  \: greater \:  than \:  its }}  \\ \tt{ \underline \purple{numerator \:  by \:  6.}}\\\tt{\red{b.}} \tt{\underline\purple{the  \: numerator \:  is  \: increased \:  by \:  5 }} \\  \tt{ \underline \purple{and  \: denominator  \: is  \: decreased \:  by  \: 3}}  \\ \tt{ \underline \purple{then \: number \: obtained \:  \frac{5}{4} .}} \\  \\  \tt \red{(from  \:  \:  \:  a.)} \\  \\  \tt \blue{let, \:  \purple{numerator \: be \: x \:} and \:} \\  \tt \purple{ denominator \: be \: (x + 6)}  \\ \\\tt{hence}\tt \purple{   \:  \: =  > \frac{x}{(x + 6)}} \tt{  \:  \:  \:  \:  \:  \: ........(1)} \\ \\  \tt \red{from \:  \:  \: b.}  \\  \tt {numerator \:  = (x + 5) \:  \:  \:  \: and} \\   \tt{denominator = (x + 6 - 3)}\\  \\  \tt\red{now} \\  \\  \tt \purple{  =  > \frac{(x + 5)}{(x + 6 - 3)} =  \frac{5}{4}  } \\  \\ \tt \purple{ =  >  \frac{(x + 5)}{(x + 3)}  =  \frac{5}{4} } \\  \\ \tt \purple{ =  > 4( x + 5) = 5(x + 3)} \\  \\ \tt \purple{  =  >4x + 20 = 5x + 15 } \\  \\ \tt \purple{ =  >  4x - 5x  = 15 - 20} \\  \\ \tt \purple{  =  > \cancel { -}  \: x =  \cancel{ -}  \: 5 } \\  \\ \tt \purple{  =  > x = 5} \\  \\  \tt{put \: value \: of  \: \: x \:  =  \: 5 \:  \: in \:(1) } \\  \\  \tt{so...} \\  \\   \tt{ =  > \frac{x}{x + 6}  =  >   } \tt \purple{  \:  \: \frac{5}{5 + 6}  =  \frac{5}{11} } \\  \\ \tt\red{hence \: the \: rational \: number \: is \:  \tt\purple{ \frac{5}{11} }.}

Similar questions