English, asked by Anonymous, 6 months ago

the denominator of a rational number is less than its ne numerator than 5 if the five is added to the numerator the new number become 11 by 6 find the original rational number​ ​

Answers

Answered by ItzCaptonMack
18

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\red{GIVEN,}

\sf\dashrightarrow \blue{THE\:GIVEN\:FRACTION\:IS\:A\:RATIONAL\:NUMBER.}

\sf\dashrightarrow {\blue{\mathbb{\text{ denominator is less than its numerator by 5.}}}}

\sf\therefore \blue{let\:the\:numerator\:be\:x}

\sf\dashrightarrow \blue{denominator= x-5}

\sf\dashrightarrow \blue{\dfrac{x}{x-5}}

\sf\dashrightarrow \bold\pink{if \:5 \:is \:added\: to \:the \:numerator, \:numerator \:becomes\: ; \dfrac{11}{6}}

\sf\dashrightarrow \red{numerator= x+5}

THE EQUATION FORM IS,

\rm{\boxed{\sf{\green{ \circ\:\: \dfrac{x+5}{x-5} = \dfrac{11}{6}\:\: \circ}}}}

\large\underline\purple{TO\:FIND,}

\sf\dashrightarrow \red{\:THE\:ORIGINAL\:RATIONAL\:NUMBER}

\sf\implies \green{\dfrac{x  + 5}{x - 5}  =  \dfrac{11}{6}}

\sf\implies \green{6 \times (x+5)= 11 \times (x-5)}

\sf\implies \green{6x+30= 11x-55}

\sf\implies \green{30+55=11x-6x}

\sf\implies \green{85= 5x}

\sf\implies \green{x= \dfrac{85}{5}}

\sf\implies \green{x= \cancel  \dfrac{85}{5}}

 \sf\implies  \orange{x = 17}

\rm{\boxed{\sf{ \circ\:\: x= 17 \:\: \circ}}}

THE ORIGINAL NUMBERS ARE,

\sf\implies \red{numerator=x =17}

\sf\implies \red{d enominator= x-5}

\sf\implies \red{denominator=17-5}

\sf\implies \pink{denominator=12}

\large\underline\orange{FRACTION,}

\sf\dashrightarrow \purple{\dfrac{x}{x-5}= \dfrac{17}{12}}

\sf\dashrightarrow \purple{\dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12}}

\rm\underline\blue{NUMERATOR\:IS\:17\:AND\: DENOMINATOR\:IS\:12}

\rm{\boxed{\sf{ \circ\:\: \dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12} \:\: \circ}}}

Answered by prince5132
24

GIVEN :-

  • The denominator of a rational number is less than its its numerator by 5 .
  • If 5 is added to the numerator the new number becomes 11/6.

TO FIND :-

  • The original fraction.

SOLUTION :-

Let assume that the numerator of a rational number is "x" and the denominator of the rational number is "x - 5".

⇒ Original fraction = Numerator/Denominator

⇒ Original fraction = x/(x - 5)

Now According to the question,

⇒ Numerator = x + 5

so,

⇒ New fraction = (x + 5)/(x - 5)

Now again according to the question,

⇒ New fraction = 11/6

⇒ (x + 5)/(x - 5) = 11/6

⇒ 6(x + 5) = 11(x - 5)

⇒ 6x + 30 = 11x - 55

⇒ 6x - 11x = -55 - 30

⇒ -5x = -85

⇒ 5x = 85

⇒ x = 85/5

x = 17

Now we have,

⇒ Original fraction = x/(x - 5)

⇒ Original fraction = 17/(17 - 5)

⇒ Original fraction = 17/12

Hene the required original fraction is 17/12.

Similar questions