Math, asked by rajashree0, 1 year ago

The denominator of a rational number is the greater than its numerator by 4 if the numerator increased by 11 and the denominator is decreased by 1 the new rational number become 7/3 find the original rational number​


igaurav23: i wanted to solve this problem... not getting option

Answers

Answered by igaurav23
30

Answer:

This is the step by step explanation

Attachments:
Answered by llTheUnkownStarll
24

Given:

  • The denominator of a rational number is greater than it's numerator by 4. If the numerator is increased by 11 and the Denominator is decreased by 1, the new number becomes ⁷⁄₃.

To find:

  • The Original number

Solution:⠀⠀

Let's say, that the numerator of the fraction be x. Then, denominator of the fraction be (x + 4) respectively.

\begin{gathered}  \orange\bigstar \:  \boxed{\sf{According \;to\;the\; Question\; :}}\end{gathered}

If the numerator is increased by 11 and the Denominator is decreased by 1, the new number becomes ⁷⁄₃.

⠀⠀

\begin{gathered} : \implies\sf\Bigg\{\dfrac{x + 11}{x + 4 - 1}\Bigg\} = \Bigg\{\dfrac{7}{3}\Bigg\}\\\\ : \implies\sf\Bigg\{\dfrac{x + 11}{x + 3}\Bigg\} = \Bigg\{\dfrac{7}{3}\Bigg\}\\\\ : \implies\sf 3\Big\{x + 11\Big\}=7\Big\{x + 3\Big\}\\\\ : \implies\sf 3x + 33 = 7x + 21 \\\\ : \implies\sf 3x - 7x = 21 - 33\\\\ : \implies\sf -4x = -12\\\\:\implies\sf x = \cancel\dfrac{-12}{-4}\\\\ : \implies\underline{\boxed{{\frak{x = 3}}}}\; \pink\bigstar\end{gathered}

Therefore,

  • Numerator of the fraction, x = 3
  • Denominator of the fraction, (x + 4) = (3 + 4) = 7 

\boxed{\sf{Hence,\: the \;original\; number\; is\;\bf{\dfrac{3}{7}}}}.

Thank you!

@itzshivani

Similar questions