Math, asked by sadhnasingh11, 10 months ago

The denominator of fraction is 12 more than the numberator . If 16 8s added to both the numberator and the denominator ,the new fraction so obtained is 10/ 13 .Find the original value .​

Answers

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ original \ value \ of \ fraction \ is \ \frac{7}{10}.}

\sf\orange{Given:}

\sf{\implies{The \ denominator \ of \ fraction \ is \ 12}}

\sf{more \ than \ numerator.}

\sf{\implies{If \ 16 \ is \ added \ to \ both \ the}}

\sf{numerator \ and \ denominator, \ the \ new}

\sf{fraction \ so \ obtained \ is \ \frac{10}{13}.}

\sf\pink{To \ find:}

\sf{The \ original \ value \ of \ fraction.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ numerator \ of \ the \ fraction \ be \ x}

\sf{and \ it's \ denominator \ be \ y.}

\sf{According \ to \ the \ first \ condition.}

\sf{y-x=12}

\sf{\therefore{-x+y=12...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{\frac{x+12}{y+12}=\frac{10}{13}}

\sf{13(x+12)=10(y+12)}

\sf{13x+156=10y+120}

\sf{13x-10y=120-156}

\sf{\therefore{13x-10y=-36...(2)}}

\sf{Multiply \ equation (1) \ throughout \ by \ 13}

\sf{-13x+13y=156...(3)}

\sf{Add \ equations \ (2) \ and \ (3)}

\sf{13x-10y=-36}

\sf{+}

\sf{-13x+13y=156}

_____________________

\sf{3y=120}

\sf{y=\frac{120}{3}}

\boxed{\sf{\therefore{y=40}}}

\sf{Substitute \ y=40 \ in \ equation (1)}

\sf{-x+40=12}

\sf{-x=12-40}

\sf{-x=-28}

\boxed{\sf{\therefore{x=28}}}

\sf{Required \ fraction \ is \ \frac{x}{y}}

\sf{i.e. \ \frac{28}{40}=\frac{7}{10}}

\sf\purple{\tt{\therefore{The \ original \ value \ of \ fraction \ is \ \frac{7}{10}.}}}

Answered by TheSentinel
53

\color{darkblue}\underline{\underline{\sf Question:}}

\rm{The \ denominator \ of \ fraction  \ is \ 12 \ more }

\rm{than \ the \ numerator. \ if \ 16 \ is \ added \ to \ both }

\rm{the \ numerator \ and \ denominator , \ the \ new}

\rm{fraction \ so \ obtained \ is \ \frac{10}{13} .}

\rm{Find \ the \ original \ value}

___________________________________________

\color{pink}\underline{\underline{\sf Answer:}}

\bf\orange{The \ original \ value \ of \ fraction \ is }

\bf\orange{ \frac{7}{10}.}

___________________________________________

\sf\purple{Given:} \\ \\

\rm{The \ denominator \ of \ fraction \ is \ 12}

\rm{more \ than \ numerator.} \\

\rm{if \ 16 \ is \ added \ to \ both \ the} \\

\rm{numerator \ and \ denominator, \ the \ new}

\rm{fraction \ so \ obtained \ is }

\rm{\frac{10}{13}} \\ \\

___________________________________________

\sf\purple{To \ find:} \\ \\

\rm{The \ original \ value \ of \ fraction}

___________________________________________

\color{red}\underline{\underline{\sf Solution:}} \\

\rm{Let \ us \ consider \  the \ numerator \ of \ the }

\rm{fraction \ is \ m \ it's \ denominator \ is \ n}

\rm{By \ the \ first \ condition.} \\

\rm{we \ have,} \\ \\

\rm{m \ - \ n \ = \ 12} \\

\rm{\implies{- \ m \ + \ n \ = \ 12 \ ............(a)}}

\rm{By \ the \ second \ condition....}

\rm{we \ have,} \\ \\

\rm{\frac{m+12}{n+12} \ = \ \frac{10}{13}}

\rm{13(m+12) \ = \ 10(n+12)} \\ \\

\rm{13m \ + \ 156 \ = \ 10n \ + \ 120} \\ \\

\rm{13m \ - \ 10n \ = \ 120 \ - \ 156} \\ \\

\rm{\implies{13m \ - \ 10n=-36..................(b)}} \\ \\

\rm{Multiply \ equation \  (a) \ by \ 13} \\ \\

\rm{we \ get} \\ \\

\rm{- \ 13m \ + \ 13n \ = \ 156 \ .................(c)}

\rm{Add \ eq^s \ (b) \ and \ (c)}

\rm{we \ get ,} \\ \\

\rm{3n=120} \\ \\

\sf{\implies{\frac{120}{3}}} \\ \\

\boxed{\star{\bf{\orange{n=40}}}}

\rm{put \ n=40 \ in \ eq^n (a)}

\rm{-m+40=12} \\ \\

\rm{-m=12-40} \\ \\

\rm{-m=-28} \\ \\

\boxed{\star{\bf{\orange{m=28}}}} \\ \\

\rm{Required \ fraction \ is \ \frac{m}{n}}

\rm{\ \frac{28}{40}=\frac{7}{10}}

\sf\orange{\bf{\boxed{The \ original \ value \ of \ fraction \ is \ \frac{7}{10}.}}}

Similar questions