Math, asked by selvageetha, 5 months ago

The derivative of cosec^-1 (x²) is​


selvageetha: tq

Answers

Answered by Anonymous
176

Question :

Find the Derivatives of the \sf\csc^{-1}(x^2)

Formula's Used :

Genral Formula

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3)\sf\dfrac{d(\cot\:x)}{dx}=\dfrac{-1}{1+x^2}

\sf4)\dfrac{d(\csc\:x)}{dx}=\dfrac{-1}{|x|\times\sqrt{x^2-1}}

Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

We have to find the derivative of\sf\csc^{-1}(x^2)

Let \sf\:x^2=t

Then,

\sf\:y=\csc^{-1}(t)

Now Differentiate it with respect to x, by chain rule

\sf\implies\dfrac{dy}{dx}=\dfrac{\csc^{-1}(t)}{t}\times\dfrac{dt}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{\csc^{-1}(t)}{t}\times\dfrac{d(x^2)}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{-1}{|t|\times\sqrt{(t)^2-1}}\times\dfrac{d(x^2)}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{-1}{|x^2|\times\sqrt{(x^2)^2-1}}\times\:2x

\sf\implies\dfrac{dy}{dx}=\dfrac{-2x}{|x^2|\times\sqrt{(x^2)^2-1}}

\sf\implies\dfrac{dy}{dx}=\dfrac{-2x}{|x^2|\times\sqrt{(x^4-1)}}


Anonymous: perfect
Anonymous: good
ItzSweetyHere: thanks !
itzshrutiBasrani: Perfect.!
Answered by ParikhAyushi
121

Answer:

Answer is in this attachment.. Hope it's help you dear

Attachments:
Similar questions