Math, asked by aditya0157, 10 months ago

The
derivative of
e^3x^2-6x+2 is​

Answers

Answered by BendingReality
5

Answer:

\displaystyle \sf \longrightarrow y'=e^{3x}(3x^2+2x)-6 \\

Step-by-step explanation:

Let :

\displaystyle \sf y=e^{3x}.x^2-6x+2 \\

Diff. w.r.t. x :

\displaystyle \sf y'=x^2.(e^{3x}.3)+e^{3x}.(2x^1)-(6x)'+(2)' \\

\displaystyle \sf y'=x^2.(e^{3x}.3)+e^{3x}.(2x^1)-(6x)'+0 \\

\displaystyle \sf y'=x^2.(e^{3x}.3)+e^{3x}.(2x^1)-6 \\

\displaystyle \sf y'=x^2.(e^{3x}.3)+e^{3x}.(2x)-6 \\

\displaystyle \sf y'=x^2.(3e^{3x})+e^{3x}.(2x)-6 \\

\displaystyle \sf \longrightarrow y'=e^{3x}(3x^2+2x)-6 \\

Therefore , we get required answer!

Similar questions