Math, asked by sindhu23031978, 3 months ago

The derivative of sin x w.r.t. cos x is
-​

Answers

Answered by shadowsabers03
3

Let,

\longrightarrow u=\sin x

Differentiating wrt x,

\longrightarrow\dfrac{du}{dx}=\dfrac{d}{dx}(\sin x)

\longrightarrow\dfrac{du}{dx}=\cos x\quad\quad\dots(1)

Let,

\longrightarrow v=\cos x

Differentiating wrt x,

\longrightarrow\dfrac{dv}{dx}=\dfrac{d}{dx}(\cos x)

\longrightarrow\dfrac{dv}{dx}=-\sin x\quad\quad\dots(2)

Dividing (1) by (2),

\longrightarrow\dfrac{\left(\dfrac{du}{dx}\right)}{\left(\dfrac{dv}{dx}\right)}=\dfrac{\cos x}{-\sin x}

\longrightarrow\underline{\underline{\dfrac{du}{dv}=-\cot x}}

\longrightarrow\underline{\underline{\dfrac{d(\sin x)}{d(\cos x)}=-\cot x}}

This is the derivative of \sin x wrt \cos x.

Similar questions