Math, asked by βαbγGυrl, 21 days ago

The derivative of \sf {sin-1 \left(2x \sqrt{(1 - x2)} )\right w.r.t \sf{sin-1 x, { \dfrac{1}{\sqrt{2}} < x < 1} ,is ?​


Anonymous: differentiate 1st fn wrt x,then 2nd wrt x,then divide the results
Anonymous: the fns should be in some other term,like t etc

Answers

Answered by mathdude500
276

\large\underline{\sf{Solution-}}

Given to differentiate

\rm \:  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }) \: w.r.t \: \:  {sin}^{ - 1}x \\

Let assume that

\rm \: u \:  =  \:  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }) \:  \\

and

\rm \: v = {sin}^{ - 1}x \\

Now, Consider

\rm \: u \:  =  \:  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }) \:  \\

Let we substitute,

\rm \: x = sin \theta \:  \\

So, above expression can be rewritten as

\rm \: u = {sin}^{ - 1}(2sin\theta  \sqrt{1 -  {sin}^{2}\theta  } ) \\

\rm \: u = {sin}^{ - 1}(2sin\theta  \sqrt{{cos}^{2}\theta  } ) \\

\rm \: u = {sin}^{ - 1}(2sin\theta   \: cos\theta ) \\

\rm \: u = {sin}^{ - 1}(sin2\theta  ) \\

Given that,

\rm \: \dfrac{1}{ \sqrt{2} }  < x < 1 \\

\rm \: \dfrac{1}{ \sqrt{2} }  < sin\theta  < 1 \\

\rm\implies \:\dfrac{\pi}{4} < \theta  < \dfrac{\pi}{2}  \\

\rm\implies \:\dfrac{\pi}{2} <2 \theta  < \pi  \\

\rm\implies \: - \pi < - 2 \theta  <  - \dfrac{\pi}{2}   \\

\rm\implies \: \pi- \pi <\pi - 2 \theta  < \pi - \dfrac{\pi}{2}   \\

\rm\implies \: 0 <\pi - 2 \theta  < \dfrac{\pi}{2}   \\

So, above expression

\rm \: u = {sin}^{ - 1}(sin2\theta  ) \\

can be rewritten as

\rm \: u = {sin}^{ - 1}[sin(\pi - 2\theta  )] \\

We know,

\boxed{\sf{  \:{sin}^{ - 1}(sinx) =   x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2} \: }} \\

So, using this, we get

\rm \: u = \pi - 2\theta  \\

\rm \: u = \pi - 2{sin}^{ - 1}x  \\

\rm \: [ \:  \because \: x = sin\theta  \: \rm\implies \:\theta  = {sin}^{ - 1}x \: ] \\

On differentiating w. r. t. x, we get

\rm \: \dfrac{d}{dx}u \:  =  \:  \dfrac{d}{dx}(\pi - 2{sin}^{ - 1}x) \\

\rm \:  \dfrac{du}{dx} \:  =  \: 0 - \dfrac{2}{ \sqrt{1 -  {x}^{2} } }  \\

\rm\implies \:\boxed{\sf{  \: \: \rm \:  \dfrac{du}{dx} \:  =  \:  - \dfrac{2}{ \sqrt{1 -  {x}^{2} } } \: }}  \\

Now, Consider

\rm \:v \:  =  \:  {sin}^{ - 1}x \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}v \:  =  \:   \dfrac{d}{dx}{sin}^{ - 1}x \\

\rm \: \dfrac{dv}{dx} \:  =  \:   \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \\

Now, Consider

\rm \:  \dfrac{du}{dv} \\

\rm \: =  \:  \dfrac{du}{dx} \div  \dfrac{dv}{dx} \\

\rm \: =  \:  -  \: \dfrac{2}{ \sqrt{1 -  {x}^{2} } } \div \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \\

\rm \: =  \:  - 2 \\

Hence,

\rm\implies \:\rm \:  \dfrac{du}{dv} \:  =  \:  -  \: 2 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}


amitkumar44481: Great :-)
Answered by guptasudha3478
148

Answer:

I hope it will help you.

I tried my best.

Attachments:
Similar questions