Physics, asked by nagarajumudenna, 9 months ago

the derivative of the function sin2xwith respect to x​

Answers

Answered by Anonymous
1

Answer:

 \boxed{\sf 2cos(2x)}

Step-by-step explanation:

 \sf Possible  \: derivation:

 \sf \implies  \frac{d(sin(2x))}{dx}

 \sf Using  \: the  \: chain \:  rule,

 \sf  \frac{d(sin(2x))}{dx}  =  \frac{dsin(u)}{du}  \times \frac{du}{dx},

 \sf where \: u = 2x \: and  \:  \frac{d(sin(u))}{du}  = cos(u) :

 \sf \implies cos(2x)( \frac{d(2x)}{dx} )

 \sf Factor  \: out \:  constants:

 \sf \implies 2cos(2x)( \frac{dx}{dx} )

 \sf The  \: derivative  \: of \:  x \: is  \: 1:

 \sf \implies 1 \times 2cos(2x)

 \sf Simplify  \: the  \: expression:

 \sf \implies 2cos(2x)

Similar questions