Physics, asked by Vivekshukla5396, 1 year ago

The descending pulley shown in figure (10-E7) has a radius 20 cm and moment of inertia 0⋅20 kg-m2. The fixed pulley is light and the horizontal plane frictionless. Find the acceleration of the block if its mass is 1⋅0 kg.
Figure

Answers

Answered by bhuvna789456
2

The acceleration of the block if its mass is 1.0 Kg is 10.3 ms².

Explanation:

Step 1:

A is light pulley and B is the pulley that descends I = 0.20 kg-m²

Radius (r) = 20 cm                              

Radius converting centimeter to meter  :

          r=\frac{20}{100} m=0.20 \mathrm{m}

Step 2:

Block’s mass = 1 kg.

The equation follows ,

       \mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}  -----> eqn ( 1 )

       \left(T_{2}-T_{1}\right) r=l \alpha  -----> eqn ( 2 )

       \mathrm{M}_{2} \mathrm{g}-\mathrm{m}_{2} \frac{a}{2}=\mathrm{T}_{1}+\mathrm{T}_{2}  -----> eqn ( 3 )

       \left(T_{2}-T_{1}\right)=\frac{t a}{2 R^{2}}=\frac{5 a}{2}

And,        

          T_{1}=a  ( ∵ =\frac{a}{2 R} )

          T_{2}=\frac{7}{2 a}

Step 3:

On substituting the values ,

                          \mathrm{M}_{2 \mathrm{B}}=\mathrm{m}_{2} \frac{\mathrm{a}}{2}+\frac{7 \mathrm{a}}{2}+a

                       \frac{2 t}{r^{2} g}=\frac{2 t}{r^{2}} \frac{a}{2}+\frac{9 a}{2} \quad\left(\frac{1}{2}=m r^{2}\right)

                          98 = 5a + 4.5a

                          9.5a = 98

                                a=\frac{98}{9.5}

                                a=10.3 \mathrm{ms}^{2}          

Thus, the acceleration is 10.3ms².                              

Attachments:
Answered by Anonymous
0

{\bold{\huge{\red{\underline{\green{ANSWER}}}}}}

10.3 m per second square

Similar questions