Math, asked by sunashaipi, 1 year ago

THE DIAGONAL OF A SQUARE 'A' IS (a+b). FIND THE DIAGONAL OF SQUARE 'B' IF AREA OF SQUARE 'B' IS HALF OF THE AREA OF SQUARE 'A'.

Answers

Answered by NAWALKISHOR
0
Required length of diagonal is (a+b) /root 2
Answered by Anonymous
3

AnswEr:

GivEn:

  • Diagonal of 'A' (square) - ( a+b )
  • Area of B = Area of A/2

To Find:

  • Area of the square 'B'
  • Side of the square 'B'
  • Diagonal of the square 'B'

Formula Used:

  •  \bullet{\boxed{\sf{ Diagonal_{(square)} = a \sqrt{2} }}} \\

  •  \bullet{\boxed{\sf{ Area_{(square)} = a^2 }}} \\

Solution:

Let the side of square 'A' is x.

then,

Diagonal of square 'A' = x√2 = a + b

 \implies{\sf{ x = \dfrac{a+b}{ \sqrt{2}} }} \\

Area of Square A =

 {\sf{ \left ( \dfrac{a+b}{ \sqrt{2}} \left ) ^2 }} \\ \\ \implies{\sf{ \dfrac{ (a+b)^2}{2} }} \\ \\

So,

2nd Situation:

Area of square 'B' =

 \implies{\sf{ \dfrac{1}{2} \times (area\:of\: square\:A) }} \\ \\ \implies {\sf{ \dfrac{1}{4} (a+b)^2 }} \\ \\

Now,

we can find the side of the square 'B';

 \implies\huge{\sf{ \sqrt{ \dfrac{1}{4} (a+b)^2 } }} \\ \\ \implies{\sf{ \dfrac{a+b}{2} }} \\ \\

Again,

Diagonal of square 'B' =

 \implies{\sf{ \dfrac{a+b}{2} . \sqrt{2} }} \\ \\ \implies{\sf{ \sqrt{2} \dfrac{(a+b)}{2} }} \\

Similar questions