Math, asked by maalexandracruz, 6 months ago

The diagonal of the rectangle is square root of 73. If the width is equals to 3cm, what is the semi-perimeter of the rectangle?

Answers

Answered by Anonymous
1

GiveN:-

The diagonal of the rectangle is square root of 73. If the width is equals to 3cm,

To FinD:-

What is the semi-perimeter of the rectangle?

SolutioN:-

We know that,

\large{\green{\underline{\boxed{\bf{Diagonal=\sqrt{(Length)^2+(Breadth)^2}}}}}}

where,

  • Breadth = 3 cm.
  • Diagonal = 73 cm.

Putting the values,

\large\implies{\sf{\sqrt{73}=\sqrt{(Length)^2+(3)^2}}}

Squaring both the sides,

\large\implies{\sf{73=(Length)^2+(3)^2}}

\large\implies{\sf{73=(Length)^2+9}}

\large\implies{\sf{73-9=(Length)^2}}

\large\implies{\sf{64=(Length)^2}}

Square rooting both the sides,

\large\implies{\sf{\sqrt{64}=Length}}

\large\implies{\sf{8=Length}}

\large\therefore\boxed{\bf{Length=8.}}

VerificatioN:-

\large\implies{\sf{Diagonal=\sqrt{(Length)^2+(Breadth)^2}}}

\large\implies{\sf{\sqrt{73}=\sqrt{(8)^2+(3)^2}}}

Squaring both the sides,

\large\implies{\sf{73=(8)^2+(3)^2}}

\large\implies{\sf{73=64+9}}

\large\implies{\sf{73=73}}

\large\therefore\boxed{\bf{LHS=RHS.}}

  • Hence verified.

Now the Semiperimeter:-

We know that,

\large{\green{\underline{\boxed{\bf{Perimeter=2(Length+Breadth)}}}}}

where,

  • Length = 8 cm
  • Breadth = 3 cm

Putting the values,

\large\implies{\sf{Perimeter=2(8+3)}}

\large\implies{\sf{Perimeter=2\times11}}

\large\therefore\boxed{\bf{Perimeter=22\:cm.}}

Semiperimeter:-

\large\boxed{\sf{Semiperimeter=\dfrac{Perimeter}{2}}}

\large\implies{\sf{Semiperimeter=\dfrac{22}{2}}}

\large\implies{\sf{Semiperimeter=\dfrac{\cancel{22}}{\cancel{2}}}}

\large\therefore\boxed{\bf{Semiperimeter=11\:cm.}}

Semiperimeter of the rectangle is 11 cm.

Similar questions