Math, asked by tudufdugcugchic, 6 months ago

the diagonals of a quadrilateral ABCD intersect each other at the point O, such that AO/BO=CO/DO. show that ABCD os a trapezium.​

Answers

Answered by Anonymous
2

FIGURE 1

Step-by-step explanation:\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}} \: \: \: { \orange{given}} \\{ \pink{ \boxed{ \green{ \frac{AO}{BO} = \frac{CO}{DO} }}}} \\ \\ { \blue{to \: prove}} \\ { \purple{ \boxed{ \red{AB || CD}}}}☆ PROOF:In \triangle ABD \\ OE || AB \: \: \: (construction) \\ \frac{AE}{DE} = \frac{BO}{DO} \: \: \: \: \: \: (by \: thales \: theoram) - - - - - (1)</p><p>\\ again \\ \frac{AO}{BO} = \frac{CO}{DO} \: \: \: \: \: \: (given) \\ \to \frac{AO}{CO} = \frac{BO}{DO} - - - - - (2)☆ FROM (1) AND (2) \frac{AE}{DE} = \frac{AO}{CO} \\ \therefore EO || DC \: \: \: \: (by \: opposite \: of \: thales \: theoram) \\ \\ so \: AB || CD \\ { \pink{ \boxed{ \green{PROVED}}}}

Similar questions