The diagonals of a rectangle ABCD meet O. Angle BOC = 50. then find angle ODA.
Answers
Step-by-step explanation:
let angle OAD=x
OAD=ADO=x.
angle AOD =BOC=50
in triangle AOD
angle OAD + angle ODA +angle AOD =180
x + x +50= 180
2x = 130
x=65
plz mark as brainliest
and happy Diwali
Answer:
∠ODA=65
∘
Step-by-step explanation:
Angle BOC=50 degrees
Let angle OBC=x
Diagonals of rectangle are equal
AC=BD
Diagonals of rectangle bisect to each other.
OD=OB
OA=OC
\frac{1}{2}AC=\frac{1}{2}BD
2
1
AC=
2
1
BD
OC=OB
Angle OBC=Angle OCB=x
Angle made by two equal sides are equal.
In triangle OBC
Angle OBC+angle OCB+angle BOC=180 degrees
Substitute the values then we get
x+x+50=180
2x=180-50=130
x=\frac{130}{2}=65^{\circ}x=
2
130
=65
∘
\angle OBC=\angle OCB=65^{\circ}∠OBC=∠OCB=65
∘
We know that rectangle is also a parallelogram
AB is parallel to CD
Angle OBC=Angle ODA
Reason: Alternate interior angles are equal
\angle ODA=65^{\circ}∠ODA=65
∘