Math, asked by Ranjitsinghvirk8807, 11 months ago

The diagonals of a rectangular field is 60 m more than the shorter side if the largest side is 30 m more than the shorter side find the sides of the field

Answers

Answered by tiaverma
2

are at a square = s2

Answered by Anonymous
72

Let ABCD be the rectangular field.

Let

  • \textbf{BC = X \:metres }
  • \textbf{AB= (x+30)\: m }
  • \textbf{diagonal \:AC = (x+60)\:m. }

\:\:

{\bold { \underline{\small{ From \:right \:∆ABC, \:we\: have:}}}}

\:\:

\sf\large \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:AC² = AB² + BC²

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf (x+60)²=(x+30)²+x²

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf x²+120x+3600

\:\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:2x²+60x+900

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf x²-60x -2700=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf x²-90x+30x-2700=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf x(x-90)+30(x-90)=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf (x-90)(x+30)=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\sf x-90=0\:or\:x+30=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{x=\frak{\orange{90}}}}}

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[\because \:length\: of\: any \:side\: of\: a\: rectangle\sf  \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:cannot\: be\: negative]

\:\:

\sf \therefore\: BC = 90 m\:and \: AB=(90+30)\: m= 120m

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \huge\pink{ \huge\star}\sf \:\: length=120\:m

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \huge\purple{ \huge\star} \sf \:\:breadth\:=90m.

Attachments:
Similar questions