The diagonals of a rectangular field is 60m more than the shorter side. if the longest side is 30 m more than the shorter side.find the side of the field.
Answers
Answer:
Step-by-step explanation:
∴Let shorter side(AC) be x m.
∴longer side(AB) =x+30 m.
∴diagonal (BC ) =x+60 m.
∴In right ΔABC:-
∴(AB)²+(AC)²=(BC)²
∴(x+30)²+(x)²=(x+60)²
∴(x²+900+60x)+(x²)=(x²+3600+120x)
∴x²+900+x²+60x=x²+120x+3600
∴2x²+60x+900=x²+120x+3600
∴2x²-x²=120x-60x+3600-900
∴x²=60x+2700
∴x²-60x-2700=0
∴x²+30x-90x-2700=0
∴x(x+30)-90(x+30)=0
∴(x-90) (x+30)=0
∴x=90 or x= -30
∴Length can't be negative. So,x=90 m.
∴Shorter side = 90 m.
∴Longer side =90+30
=120 m.
∴diagonal =90+60
=150 m.
Let the shorter side be x.
Diagonal = x+60
Longer side = x+30
By applying Pythagoras theorem,
(x+30)^2+x^2 = (x+60)^2
x^2+60x+900+x^2= x^2+3600+120x
x^2-60x-2700=0
D= 3600-4(1)(-2700) = 3600+10800=14400
=120
But, x cannot be negative. So, x = 90
Thus, shorter side = 90m, longer side= 120 m
hope this helps you
please mark the answer as brainlest please
please follow me ishu