Math, asked by sumit3033, 1 year ago

The diagonals of a rhombus are 12 cm and 9 cm long.
Calculate the length of one side of the rhombus.​

Answers

Answered by BrainlyConqueror0901
76

Answer:

\huge{\pink{\boxed{\green{\sf{SIDE=7.5cm}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \: \:{ \orange{given}} \\ { \pink{ \boxed{ \green{d1 = 12cm}}}} \\ { \pink{ \boxed{ \green{d2 = 9cm}}}} \\  \\  {\blue{to \: find}} \\ { \purple{ \boxed{ \red{side =? }}}}

According to given question:

We know the properties of rhombus

(1) side \: of \: rhombus \: are \: equal \\ (2)diagonals \: bisects \: each \: other \: at \: 90 \degree \\ (3)bisecting \: of \: diagonals \: form \: 4 \: equal \: right \: angled \: triangle \\ (4)diagonals \: are \: unequal

According to (2) and (3) properties :

 \to {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \to {h}^{2}  = ( {6}^{2} )  + ( {4.5})^{2}  \\  \to {h}^{2}  = 36 + 20.25 \\  \to {h}^{2}  =56.25 \\  \to h =  \sqrt{56.25}  \\   \to h = 7.5cm\\  { \pink{ \boxed{ \green{\therefore side= 7.5cm}}}}

_________________________________________

Similar questions