the diagonals of parallelogram PQRS intersect at O . If angle QOR = 90° and angle QSR = 50°. Find angle QRS.
Answers
Answer:
answer will be 90 degree
Step-by-step explanation:
since POS=POQ=SOR=ROQ
by SAS
OSR =50 DEGREE
ORS =40DEGREE
ORQ=50 DEGREE
Step-by-step explanation:
Angle QSR=50 degrees
Angle QOR=90 degrees
PQ is parallel to RS and QR is parallel to PS
Angle SOR=180-angle QOR=180-90=90degrees
Angle POQ=180-angle QOR=180-90=90 degrees
Angle QOR=Angle POS=90 degrees (Vertical opposite angles are equal)
When the diagonals of parallelogram bisect perpendicularly then the parallelogram is a rhombus.
Therefore, PQRS is a rhombus
PQ=QR=RS=PS
In triangle SOR
Reason: Triangle angles sum property
Angle SPO=Angle ORS=40 degrees
Angle made by two equal sides are equal
Angle SPO=Angle ORQ=40 degrees
Reason: Alternate interior angles
Angle QRS=Angle QRS+angle ORQ=40+40=80 degree
Hence,
#Learns more:
https://brainly.in/question/2204379