Math, asked by indusvalue6220, 1 year ago

The diameter and thickness of a hollow metals sphere are 12 cm and 0.01 m respectively. The density of the metal is 8.88 gm per cm³. Find the outer surface area and mass of the sphere.

Answers

Answered by hukam0685
44
A.T.Q
Diameter of hollow sphere is 12 cm
it's thickness is 0.01 m
Density of the metal is 8.88 gm/cm^3
Outer surface area of sphere:
4\pi {r}^{2}  \\

Radius=Diameter/2
Radius=12/2= 6 cm
outer surface area
 = 4 \times  \frac{22}{7}  \times  {(6)}^{2}  \\  =  \frac{4 \times 22 \times3 6}{7}  \\  = 452.57 {cm}^{2}  \\
Now,Mass of the sphere m= density *volume
To calculate volume V=
 \frac{4}{3} \pi {r}^{3}  \\
for inner V1=
 \frac{4}{3}  \times \pi \times  {(r1)}^{3}  \\
inner radius= outer radius - thickness
= 6-1
=5 cm
V1
 =  \frac{4}{3}  \times \frac{22}{7} \times ( {5)}^{3}   \\  =  \frac{4 \times 22 \times 125}{21}  \\  = 523.81 \: {cm}^{3}  \\
V2=
 \frac{4 \times 22 \times ( {6)}^{3} }{21}  \\  = 905.15 {cm}^{3}
Volume=V2-V1

905.15 - 523.81 \\  = 381.34 {(cm)}^{3}
Mass of sphere=8.88(381.34)
=3386.30 gm
or 3.39 kg

Answered by Robin0071
15

formul a \: volume \:  \: of \: hollow \: sphere \:  \\  \frac{4}{3} \pi \: ( {R }^{3}  -  {r}^{3} ) \\  \frac{4}{3}  \times  \frac{22}{7}  \times ( {6}^{3}  -  {5}^{3} ) \\  \frac{88}{3 \times 7}  \times (216 - 125) \\  \frac{88}{3 \times 7}  \times 91 \\  \frac{88 \times 13}{7}  = 381.34  {cm}^{3} \\ mass \: of \: sphere = 381.34 \times 8.88 \\  = 3386.30gm \\  = 3.38kg
■I HOPE ITS HELP■
Attachments:
Similar questions