Math, asked by poonamyadav81005, 4 months ago

the diameter of a metallic ball is 35 CM what is the mass of the ball if the density of the metal is 8.9 gm per cm cube​

Answers

Answered by ShírIey
49

S O L U T I O N

\frak{Given}\begin{cases}\sf { \:  \:  \:  \: Diameter \;of\;Ball = 35\;cm}\  \\\sf{\:\; \: \; Radius = \dfrac{Diameter}{2} = \cancel\dfrac{35}{2} = 17.5\;cm}\\\sf{\:\;\;  \: Density \;of\;metal = 8.9 gm/cm^3}\end{cases}

To find: Mass of the Ball?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀⠀

⠀⠀⠀

\star\;\boxed{\sf{\pink{Volume_{sphere} = \dfrac{4}{3} \pi r^3}}}

⠀⠀⠀

:\implies\sf Volume_{sphere} = \dfrac{4}{3} \times \dfrac{22}{7} \times (17.5) \times (17.5) \times (17.5) \\\\\\:\implies\sf Volume_{sphere} = \cancel\dfrac{67313.75}{3}  \\\\\\:\implies{\underline{\boxed{\sf{ Volume_{sphere} = 22437.91\;cm^3}}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀⠀

\star\;\boxed{\sf{\pink{Density = \dfrac{Mass}{Volume}}}}

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Substituting\;values\: :}}

⠀⠀⠀

:\implies \mathsf {8.9 = \frac{Mass}{22437.91}} \\\\\\\:\implies \sf Mass = 22437.91 \times 8.9\\\\\\:\implies{\underline{\boxed{\sf{\pink{Mass = 199697.45}}}}}\;\bigstar

⠀⠀⠀

\therefore{\underline{\sf{Hence,\; required\;mass\;is\; \bf{ 199697.45\;(approx)}.}}}

Answered by Anonymous
44

Answer:

Given:-

  • Diameter of metlic ball = 35cm
  • Radius of metlic ball = \frac{35}{2}= 17.5cm
  • Density of Ball = 8.9gm

To Find:-

  • Mass of the ball

Formula used:-

  • Volume of sphere = \Large\frac{4}{3}πr³
  • Density = \Large\frac{mass}{volume}

According to Question:-

Volume of Sphere = \Large\frac{4}{3}πr³

Volume of Sphere = \Large\frac{4}{3}   \times 3.14 \times 17.5 \times 17.5= 67313.65

Volume of Sphere = {\cancel{\dfrac{67313.65}{3}}}= 22436.91 cm³

━━━━━━━━━━━━━━━━

Density = \Large\frac{mass}{volume}

8.9 = \Large\frac{mass}{22437.91}

Mass = 199697.45 g

Hence, Mass of the volume = 199697.45 Gram.

Similar questions