Math, asked by Dillirao571, 1 year ago

The diameter of a rectangle is 15cm.if the length of the rectangle is 12cm what will be the perimeter of this rectangle

Answers

Answered by Sreepurna
16
Given data.
Diameter of rectangle = 15cm
length of the rectangle = 12cm

required data.
perimeter of rectangle is ? cm.

formula.
diameter of rectangle = √( L^2 + w^2)
perimeter of rectangle = 2( l+b)

diameter is nothing but diagonal

according to hypotnuse theorem
15^2 = 12^2 + breadth ^2

b^2 = 15 ^2 - 12^2
b^2 = 81
b = 9 cm

perimeter of rectangle = 2(l+b)
= 2(12+9)
so perimeter of rectangle = 42 cm

Hope it helps!
Thank you!
Attachments:
Answered by Anonymous
282

\Large\underline\bold{given}

 \sf\dashrightarrow Diameter\:of \:rectangle = 15cm

 \sf\dashrightarrow  length\:of\:the\:rectangle = 12cm

\Large\underline\bold{to\:find,}

 \large\implies perimeter\:of\:rectangle

\Large\underline\bold{solution,}

\sf\dashrightarrow diameter\:of\:rectangle= \sqrt{( L^2 + w^2)}

\sf\dashrightarrow perimeter\:of\:rectangle = 2 \times( L+B)

\sf\underline\bold{note:-diameter\:of\:is\:diagonal}

 \sf\therefore\star by\: Pythagoras\:theorem,

 \sf\therefore (hypo)^2=(side)^2+(side)^2

 \sf\implies (15)^2 =(12)^2+(B)^2

 \sf\implies (15)^2-(12)^2 =(B)^2

 \sf\implies (B)^2=(225)-(144)

 \sf\implies (B)^2=81

 \sf\implies B= \sqrt{81}

 \sf\implies B=9cm

\sf {\fbox {B=9cm }}

\sf\large\underline\bold{now,}

 \sf\therefore perimeter\:of\: rectangle=2 \times (L+B)

 \sf\implies 2 \times (12+9)

 \sf\implies 2 \times (21)

 \sf\implies 42cm

\sf {\fbox { perimeter \:of\:rectangle=42cm}}

________________

\Large\underline\bold{in\:detail,}

\Large\underline\bold{1)diargram\:of\:rectangle}

\Large\underline\bold{2)part\:of\:the\:rectangle}

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){B}\put(18,-2){}\put(35,15){L}\put(18,0){  }\end{picture}

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.1mm}\put(0,0){\line(0,1){37.5}}\put(0,0){\line(1,0){25}}\put(25,0){\line(-2,3){25}}\end{picture}\put(-32,18){12}\put(-18,-1.5){Bredth}\put(-18.2,20){15}

Similar questions