Math, asked by AmrithSham, 4 months ago

The diameter of a roller is 98cm and its length is

130cm.It takes 450 complete revolutions to move once

over to level a playground. Find the area of the

playground in m2

.​

Answers

Answered by Anonymous
6

Answer:

Explanation:

Given :

  • Diameter of a roller (d) = 98 cm
  • Length (h) = 130 cm
  • Number of revolutions = 450

To Find :

  • The area of the playground in m².

Solution :

We know,

Diameter = r × 2

=> 98 = r × 2

=> r = 98/2

=> r = 49 cm

Converting units,

Radius (r) = 49 cm => 0.49 m

Length (h) = 130 cm => 1.3 m

We need to find curved surface area of cylinder,

CSA = 2πrh

=> CSA = 2 × 3.14 × 0.49 × 1.3

=> CSA = 6.28 × 0.637

=> CSA = 4.00036

Now,

Area of playground = CSA × Number of revolutions

=> Area of playground = 4.00036 × 450

=> Area of playground = 1800.162

Hence :

The area playground is 1800.162 m².

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{diameter \: of \: roller \:  = 98 \: cm} \\ &\sf{length \: of \: roller \:  = 130 \: cm}\\ &\sf{number \: of \: revolutions \:  = 450} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{area \: of \: playground \: in \:  {m}^{2} }  \end{cases}\end{gathered}\end{gathered}

Formula Used:-

{{ \boxed{{\bold\green{Curved \:  Surface  \: Area_{(Cylinder)}\: = \:2\pi rh)}}}}}

\large\underline\purple{\bold{Solution :-  }}

Given Dimensions of roller

  • Diameter of roller = 98 cm
  • Therefore, radius of roller, r = 49 cm
  • Height of roller, h = 130 cm

☆ Area covered in 1 revolution is equals to Curved Surface Area of roller.

\tt \:   \longrightarrow \:CSA_{cylinder} = 2\pi \: rh

\tt \:   \longrightarrow \:CSA_{cylinder} = 2 \times \dfrac{22}{7}  \times 49 \times 130

\tt \:   \longrightarrow \:CSA_{cylinder} = 40040 \:  {cm}^{2}

\tt \:   \longrightarrow \:CSA_{cylinder} = 40040 \times \dfrac{1}{100}  \times \dfrac{1}{100}  {m}^{2}

\tt \:   \longrightarrow \:CSA_{cylinder} = 4.004 \:  {m}^{2}

\tt\implies \:area \: covered \: in \: 1 \: revolution \:  = 4.004 \:  {m}^{2}

\tt\implies \:area \: covered \: in \: 450 \: revolutions \:    \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 450 \times 4.004 \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:   \:  = 1801.8 \:  {m}^{2}

\tt\implies \:area \: of \: playground \:  = 1801.8 \:  {m}^{?}

Similar questions
English, 10 months ago