Math, asked by karanrajput46628, 3 months ago



The diameter of a sphere is 14 cm. Calculate its volume.

Answers

Answered by nelsondesouza12
0

Answer:

the above attachment is the answer of the question

Attachments:
Answered by Anonymous
4

Given :

  • Diameter of Sphere = 14cm

 \:  \:  \:  \:

 \:  \:  \:  \:

To Find :

  • The Volume

 \:  \:  \:  \:

 \:  \:  \:  \:

Solution :

  • As in the question Diameter of Sphere is given. So, Firstly we will find the radius if the sphere. After Getting the radius of Sphere We will Find volume of Sphere by using the formula of Volume 4/3πr³,Where r is radius and π is 22/7. By Putting the values in the formula we will get Volume of the Sphere.

 \:  \:  \:  \:

  • Diameter = 14cm

  • Radius = 14/2 = 7cm

 \:  \:  \:  \:

 \:  \:  \:  \:

  \pink\star \: { \color{red}{ \underline{ \boxed{ \color{blue}{ \pmb{ \frak{Volume \:  of  \: Sphere =  \dfrac{4}{3}\pi {r}^{3} }}}}}} \: { \pink{ \star}}}

 \:  \:  \:  \:

 \:  \:  \:  \:

~~~~~~~~~~~      \sf\leadsto \: \dfrac{4}{3}  \times  \dfrac{22}{7}    \times ({7})^{3}

 \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:

~~~~~~~~~~~ \sf \leadsto \:  \dfrac{4}{3}  \times  \dfrac{22}{7}  \times 7 \times 7\times 7

 \:  \:  \:

 \:  \:  \:  \:

~~~~~~~~~~~ \sf \leadsto \:  \dfrac{4}{3}  \times 22 \times 7 \times 7

 \:  \:  \:

 \:  \:  \:  \:

~~~~~~~~~~~  \sf\leadsto  \: \dfrac{4}{3}  \times 1078

 \:  \:  \:  \:

 \:  \:  \:  \:

~~~~~~~~~~~ \sf \leadsto \: 1437.33 {cm}^{3}

 \:  \:  \:  \:

 \:  \:  \:  \:

{ \blue{ \underline{ \boxed{ \color{red}{ \bf{\therefore  \: Volume  \: of \:  Sphere  \: is \:  1437.33{cm}^{3}}}}}}}

 \:  \:  \:  \:

 \:  \:  \:  \:

More to Know :

 \:  \:  \:  \:

 \:  \:  \:  \:

\begin{gathered}\small\boxed{\begin{array}{cc}\large  \color{red}\boxed {\textsf{\textbf\color{blue}  \green\dag \: {MORE \: FORMULAE \:   \green\dag}}}  \\ \\  \pink\bigstar \: \sf{Volume \: of \: cylinder = \pi {r}^{2}h } \\ \\ \pink\bigstar \: \sf{Volume \: of \: cone =  \dfrac{1}{3}\pi {r}^{2}h}  \\ \\  \pink\bigstar \: \sf{Volume \: of \: cube  = {a}^{2}} \\ \\    \pink\bigstar  \: \sf{Volume \: of \: cubiod = L \times B \times h} \\ \\ \pink  \bigstar  \: \sf{Volume \: of \: sphere =  \dfrac{4}{3}\pi {r}^{3}  } \\  \\   \:  \pink\bigstar \: \sf{Volume \: of \: hemisphere =  \dfrac{2}{3}\pi {r}^{3}}  \end{array}}\end{gathered}

Similar questions