Math, asked by wisenamoce, 10 months ago

The diameter of an electric cable, Say X, is assumed to be continuous random variable with
p.d.f f (x)= 6x(1-x), 0<=x<=1.

1.) Show that f(x) is a p.d.f.




Answers

Answered by amitnrw
1

Given :   The diameter of an electric cable, Say X, is assumed to be continuous random variable with p.d.f f (x)= 6x(1-x),    0 ≤ x  ≤ 1

To find : Show that f(x)  is a p.d.f.  (probability density function )

Solution:

f(x)  = 6x(1 - x)    0 ≤ x  ≤ 1

Function  f(x)  is a probability density function  in range a  to b

if      \int\limits^b_a {f(x)} \, dx  = 1

f(x)  = 6x(1 - x)  

f(x) = 6x  - 6x²

\int\limits^1_0 {(6x - 6x^2)} \, dx

=  [ \frac{6x^2}{2}  -  \frac{6x^3}{3} ] ^1_0

= [ 3x^2   -  2x^3  ] ^1_0

= 3(1)² - 2(1)³  - ( 0 - 0)

= 3 - 2 - 0

= 1

\int\limits^1_0 {(6x - 6x^2)} \, dx  =  1

Hence f(x) = 6x(1 - x)    0 ≤ x  ≤ 1  is pdf  ( probability density function )

Learn more:

A random variable X has the probability distribution - Brainly.in

https://brainly.in/question/5372170

Similar questions