Math, asked by Anonymous, 3 months ago

the diameter of right circular cylinder is 7 cm and its height is 16 cm Bind
the total surface area of the cylinder?​

Answers

Answered by Anonymous
22

Given:

  • Diameter = 7 cm = (2r)
  • Height (h) = 16 cm

To Find:

  • Total Surface area of the cylinder

Solution

 \\ \circ \: \: \: {\boxed{\tt\gray{ Total \ Surface \ Area_{(Cylinder)} = 2πrh + 2πr^2 }}} \\

Diameter (d) = 2r

 \implies {\tt{ 7 = 2r}} \\ \\ \implies{\tt{ \dfrac{7}{2} = Radius_{(r)} }} \\

After putting values,

 \colon\longrightarrow{\tt{ T.S.A_{(Cylinder)} = \cancel{2} \times \dfrac{22}{ \cancel{7} } \times \dfrac{ \cancel{7} }{ \cancel{2} } \times 16 + 2 \times \dfrac{22}{7} \times \left( \dfrac{7}{2} \right)^2 }} \\ \\ \\ \colon\longrightarrow{\tt{ T.S.A_{(Cylinder)} = 22 \times 16 + \cancel{2} \times \dfrac{22}{ \cancel{7} } \times \dfrac{7}{2} \times \dfrac{ \cancel{7} }{ \cancel{2} } }} \\ \\ \\ \colon\longrightarrow{\tt{ T.S.A_{(Cylinder)} = 22 \times 16 + \cancel{22} \times \dfrac{7}{ \cancel{2} } }} \\ \\ \\ \colon\longrightarrow{\tt{ T.S.A_{(Cylinder)} = 352 + 11 \times 7 }} \\ \\ \\ \colon\longrightarrow{\tt{ T.S.A_{(Cylinder)} = 352 + 77 }} \\ \\ \\ \colon\longrightarrow{\boxed{\tt\pink{ T.S.A_{(Cylinder)} = 429 \ cm^2 }}} \\

Hence,

  • The Total Surface Area of the circular Cylinder is 429 cm² .
Similar questions