Math, asked by sejalsingh0608, 1 year ago

The diameter of the lower and upper end of a bucket in the form of a frustum of a cone are10 cm and 30 cm respectively. If its height is 24 cm, find :i) the area of the metal sheet used to make the bucket.

Answers

Answered by nitthesh7
3
Area of metal sheet to be used = CSA of Frustum + Area of base

                                                     = πl(R+r) + πr²

l = √h² + (R-r)²

l = √(24)² + (15-5)²

l = √576 + 100

l = √676 = 26 cm

Then,                                         = πl(R+r) + πr²

                                                  = 3.14 × 26 (15+5) + 3.14 (5)²

                                                  = 3.14 (26 × 20 + 25)  

                                                  = 3.14 (520 + 25)

                                                  = 3.14 × 525

                                                   = 1711.3 cm²
_______________________________________________________ 


☺☺☺ Hope this Helps ☺☺☺
Answered by Anonymous
1

Diameter of lower end (D1)


= 10 cm



Diameter of upper end (D2)



= 30 cm



Height of the bucket (h) = 24 cm



l^2 = (r2 - r1)^2 + h^2



= (15 - 5)^2 + 242



= 100 + 576



l = 676 = 26 cm^2



Area of metal sheet used in making bucket



= CSA of bucket + area of smaller circular base



\bf\huge = \pi (r_{1} + r_{2} )l + \pi r^{2}



\bf\huge = \pi (r_{1} + r_{2})\: l + r^{2}



= 3·14{(5 + 15)26 + 52}



= 3·14(520 + 25)



= 3·14 × 545



Area of metal sheet used in making bucket



= 1711·3 cm^2

Similar questions