Math, asked by educationtech, 10 months ago

The diameter of the two circles is 42 cm, respectively. And 56 cm. . Determine the radius of the third circle if the area of ​​another third circle is equal to the sum of the areas of the first two circles.​

Answers

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ radius \ of \ third \ circle \ is \ 35 \ cm}

\sf\orange{Given:}

\sf{\implies{Diameter \ of \ two \ circles \ are \ 42 \ cm}}

\sf{and \ 56 \ cm.}

\sf{\implies{Area \ of \ third \ circle \ is \ equal}}

\sf{to \ sum \ of \ area \ of \ first \ two \ circles.}

\sf\pink{To \ find:}

\sf{Radius \ of \ the \ third \ circle.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Radius \ of \ first \ two \ circles \ are}

\sf{\frac{42}{2} \ cm \ and \ \frac{56}{2} \ cm \ respectively.}

\sf{i.e. \ 21 \ cm \ and \ 28 \ cm \ respectively.}

____________________________________

\sf{Area \ of \ circle=\pi\times \ r^{2}}

\sf{...formula}

\sf{Let \ the \ radius \ of \ third \ circle \ be \ R}

\sf{Area \ of \ third \ circle=}

\sf{Area \ of \ first \ circle + Area \ of \ second \ circle}

\sf{\pi\times \ R^{2}=\pi\times21^{2}+\pi\times28^{2}}

\sf{\pi\times \ R^{2}=\pi\times(21^{2}+28^{2})}

\sf{\therefore{R^{2}=21^{2}+28^{2}}}

\sf{R^{2}=441+784}

\sf{R^{2}=1225}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{R=35 \ cm}

\sf\purple{\tt{\therefore{The \ radius \ of \ third \ circle \ is \ 35 \ cm}}}

Similar questions