Math, asked by rajeshgadiya4981, 11 months ago

The diameter of the wheel of a car is 63 cm find the distance travelled by the particle during the period in which the wheel makes 1000 revolution

Answers

Answered by Aɾꜱɦ
3

Answer:

\huge\underline\textsf{ 1.98cm }

\huge\underline\textsf{Explantion:- }

\leadsto\bf diameter = 63cm \\ \leadsto\bf radius =  \frac{63}{x}  = 31.5

\small\boxed{\bf no.of \: revolution =  \frac{distance}{circumference \: of \: wheel}}

\leadsto\bf1000 =  \frac{distance}{2\pi \: r}

\leadsto\bf1000 =  \frac{distance}{2 \times  \frac{22}{7} \times 31.5 }

\leadsto\bf1000 =  \frac{distance}{198}

\leadsto\bf distance = 1000 \times 198 \\ \leadsto\bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 198000cm \\ \leadsto\bf\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1.98cm

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \: Given,  \:} } \\ \\  \tt{ Diameter  \:  \: of \:  \:  the \:  \:  wheel, d = 63 cm } \\   \\ \tt{\therefore \:  Radius \:  \:  of  \:  \: the  \:  \: wheel, r =( \frac{63}{2}  ) \:  \: cm} \\  \\  \tt{ \: No. \:  \:  of \:  \:  revolution  \:  \: = 1000 } \\  \\  \\  \underline{ \mathfrak{ \:  \: To  \:  \: find : \mapsto \: }} \:  \:  \:  \:  \tt{Distance \:  \:  travelled = ? }

 \underline{ \mathfrak{  \: \: We  \:  \: know \:  \:  that,  \:  \: }} \\  \\  \boxed{\boxed{\sf{ \red{No.of \: revolution = \frac{Distance}{Circumference \: of \:circular \: object}}}}} \\  \\  \:  \:   \:  \:  \:  \:  \: \boxed{ \boxed{ \sf{ \red{ \:  \: Circumference   \:  \: of   \:  \: a  \:  \:  circle =2  \pi \: (Radius)  }}}}

 \sf{Here, } \\  \\  \sf{Circumference  \: of the  \: wheel =  2 \: \pi \: r} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = ( \cancel{2} \times  \frac{22}{ \cancel{7}}  \times  \frac{ \cancel{63}  \:  \: {}^{9} }{ \cancel{2}})    \:  \: \:  cm } \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\sf{ = (22 \times 9) \:  \:  \: cm} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = 198 \:  \: cm}

 \underline{\bold{ \:  \: A.T.Q.,  \:  \: }} \\  \\   \:  \:  \:  \: \tt{No.  \:  \: of  \:  \: revolution =  \frac{Distance}{ Circumference \:  \:  of \:  \:  the\:  \:  wheel}} \\  \\  \tt{ \implies \: Distance =No.  \:  \: of  \:  \: revolution \times  Circumference \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ of \:  \:  the\:  \:  wheel} \\  \\ \tt{ \implies \: Distance =(1000 \times 198) \:  \: cm} \\  \\ \tt{ \implies \: Distance =198000 \:  \: cm} \\ \\ \: \: \: \tt{ \therefore \: \: Distance = 1.98 \: \: Km}

________________________________________________

 \mathfrak{We \: \: know, } \\  \\   \:  \:  \:  \:  \:  \: \tt{100 cm  = 1 m} \\  \\  \tt{ \implies \: 1 cm =  \frac{1}{100}   \:  \: \: m} \\  \\  \tt{ \implies \: 198000 cm =  (\frac{1}{100}  \times 198000)  \:  \: m} \\  \\ \:  \:  \:  \:  \:  \:   \tt{ \therefore\:  \:  \underline{ \: 198000 \: cm = 1980 \:  \: m \: }} \\  \\  \mathfrak{Again,} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{1000  \: m = 1  \: Km} \\  \\  \tt{ \implies \: 1 \: m =  \frac{1}{1000} \:  \:  Km}  \\  \\  \tt{\implies \:  \: 1980 \:  \: m =  (\frac{1}{1000} \times 1980)  \:  \: Km} \\  \\ \:  \:  \:  \:   \tt{ \therefore \:  \:  \:  \underline{  \red{\:  \: 1980 \:  \: m = 1.98 \:  \: Km \:  \: }}}

________________________________________________

 \therefore \:  \:  \text {\: Distance travelled by the car in 1000 } \\  \text{revolution =  \red{1.98 Km }.}

Similar questions