Math, asked by vandanajayant225, 1 day ago

the difference between a 2-digit number and the number formed by reversing it's digits is 45. IF the sum of the digits of the original numbers is 13 then find the number

Answers

Answered by dheerajkabir34
2

Answer:

94

Step-by-step explanation:

let take original number =94

by reversing, it bcomes 49

94-49 =45

and 9+4 = 13

so, the right answer is 94

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: x} \\  \\ &\sf{digits \: at \: ones \: place \: be \: y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10x + y} \\  \\ &\sf{reverse \: number = 10y + x} \end{cases}\end{gathered}\end{gathered}

According to first condition

↝ Sum of the digits of two number is 13

\rm \implies\:\boxed{ \tt{ \: x + y = 13 \: }} -  -  -  - (1)

According to second condition

The difference between a 2-digit number and the number formed by reversing it's digits is 45.

\rm \implies\:(10x + y) - (10y + x) = 45

\rm \implies\:10x + y - 10y  -  x= 45

\rm \implies\:9x - 9y = 45

\rm \implies\:9(x - y )= 45

\rm \implies\:\boxed{ \tt{ \: x - y = 5 \: }} -  -  -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:x + y + x - y = 13 + 5

\rm :\longmapsto\:2x  = 18

\bf\implies \:x = 9

On substituting the value of x in equation (1), we get

\rm :\longmapsto\:9 + y = 13

\rm :\longmapsto\: y = 13 - 9

\bf\implies \:y = 4

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: 9} \\  \\ &\sf{digits \: at \: ones \: place \: be \: 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10x + y = 10(9) + 4 = 94} \\  \\ &\sf{reverse \: number = 10y + x = 10(4) + 9 = 49} \end{cases}\end{gathered}\end{gathered}

  • Hence, Two digit number is 94.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Writing Systems of Linear Equation from Word Problem.

1. Understand the problem.

  • Understand all the words used in stating the problem.

  • Understand what you are asked to find.

2. Translate the problem to an equation.

Assign a variable (or variables) to represent the unknown.

Clearly state what the variable represents.

3. Carry out the plan and solve the problem.

Similar questions