The difference between the compound interest & simple interest on a sum of ₹15000 for 2 years is ₹96 find the rate of interest
Answers
||✪✪ GIVEN ✪✪||
- Principal = Rs.15000
- Time = 2 years .
- Difference b/w CI and SI = Rs.96
|| ✰✰ ANSWER ✰✰ ||
Basic Method :-
Lets Assume That, Rate of interest is R% per annum.
Than,
→ SI = (P * R * T)/100
Putting values ,
→ SI = (15000*R*2)/100
→ SI = 300R.
Similarly,
→ CI = Amount - Principal
→ CI = P[ 1 + (R/100)]² - P
→ CI = P[ { 1 + (R/100)}² - 1]
Putting values ,
→ CI = 15000 [ { 1 + (R/100)}² - 1]
→ CI = 15000*[ (100+R/100)² - 1]
→ CI = 15000 *[ {(100+R)² - 100²}/100² ]
→ CI = 15000 * [ { R² + 200R }/100²]
→ CI = 1.5 * [ R² + 200R]
→ CI = 1.5R² + 300R
Difference b/w, CI and SI now,
→ (1.5R² + 300R) - 300R = Rs.96
→ 1.5R² = 96
→ R² = (96/1.5)
→ R² = 64
→ R = 8%
Hence , Required Rate of interest is 8% per annum.
______________________________
✫✫ Shortcut Trick ✫✫
Difference Between CI and SI for 2 Years is :-
☛ Difference = [ {Principal * (Rate)²} / (100)² ]
we Have Given Now :-
⇒ Difference = Rs.96
⇒ Principal = Rs.15000
⇒ Let Rate = R% .
Putting values in Our Formula we get :-
☞ 96 = [ {15000*R²} / (100)² ]
☞ 96 * 100 * 100 = 15000 * R²
☞ 960 = 15R²
☞ R² = 64
☞ R = 8% .
Hence , Rate is 8% per annum.
______________________________
REFER TO THE ATTACHMENT
The required Rate of interest is 8% per annum.