Math, asked by mdshanwz92591, 9 months ago

The difference between the compound interest and simple interest on Rs 4000 at 8% p.a in 2 years is

Answers

Answered by purva7233
6

Answer:

ANSWER

For ,

N=2years

R=10 %

P=Rs4,000

We have S.I.=

100

PNR

=

100

4,000×2×10

=Rs800

And on interest being compounded for 2 years and R=10 %, Amount=P(1+

100

R

)

N

=4,000×(1+

100

10

)

2

=4,000×1.1×1.1=Rs.4,840

So, C.I.=A−P=4,840−4,000=840

And required difference C.I.−S.I.=840−800=Rs40

Step-by-step explanation:

hope it will helps you :)

Answered by itzBrainlystarShivam
2

\Huge\boxed {r.s=25.6}

\Large{\textsf{\textbf{\underline{\underline{Given\::}}}}} \\

p = rs.4000

r = 8\%p.a.

t = 2 \: years.

\Large{\textsf{\textbf{\underline{\underline{To.find\::}}}}} \\

●diffrence \: between  \\ \: ci \: and \: si

\Large{\textsf{\textbf{\underline{\underline{formulas.used\::}}}}} \\

si =  \frac{prt}{100}

A = p \:   (1 +  \frac{r}{100} )t

c.i = a-p

\Large{\textsf{\textbf{\underline{\underline{solusion\::}}}}} \\

{\bf{1.case\::}} \\

➣to \: find \: s.i.

➣we \: know, \:

➣s.i. =  \frac{p \times r \times t}{100}

➣s.i. =  \frac{4000 \times  8 \times 2}{100}

\small{\textsf{\textbf{\underline{\underline{ ➣s.i = 640\::}}}}} \\

{\bf{2.case\::}} \\

➣to \: find \: ci,

➣we \: know, \:

➣A = p(1 +  \frac{r}{100} )t

➣a = 4000(1 +  \frac{8}{100} ) {}^{2}

➣a = 4000(100 +  \frac{8}{100} ) {}^{2}

➣a = 4000( \frac{108}{100} ) {}^{2}

➣a = 4000  \times  \frac{108}{100} \times  \frac{108}{100}

\small{\textsf{\textbf{\underline{\underline{➣A = 4665.6\::}}}}} \\

{\bf{3.case\::}} \\

➣to.find.c.i

➣we.know. c.i = A - p

➣c.i = 4665.6 - 4000

\small{\textsf{\textbf{\underline{\underline{➣c.i = 665.6\::}}}}} \\

\small{\textsf{\textbf{\underline{\underline{now.finding.the.diffrence.between.ci.and.si\::}}}}} \\

➣c.i = 665•6

➣s.i = 640

➣difference = r.s  (665.6 - 640)

\Large{\textsf{\textbf{\underline{\underline{➣r.s = 25.6\::}}}}} \\

\Large{\textsf{\textbf{\underline{\underline{form.the.soluaion\::}}}}} \\

●p = principal \\ ●r = rate \: of \: interest \\ ●t = time \\ ●si = simple \: interest \\ ●ci  = compound \: interest \\ ●a = amount

Similar questions