Math, asked by magdalenemysticamari, 4 months ago

The difference between the compound interest
and the simple interest on a certain sum of
money at 10% per annum for 3 years is Rs 496.
Find the sum when the interest is compounded
annually.
Sum of money = Rs
.​

Answers

Answered by BrainlyTopper97
54

{\large{\boxed{\underline{\mathrm{\bf{\orange{Given:-}}}}}}}

  • Rate of interest = 10% p.a.
  • Time = 3 years
  • Difference between Simple Interest and Compound Interest = ₹496

{\large{\boxed{\underline{\mathrm{\bf{\red{To \ Find:-}}}}}}}

  • Sum of money

{\large{\boxed{\underline{\mathrm{\bf{\pink{Formula \ Used:-}}}}}}}

\bigstar \ {\boxed{\mathsf{\tt{\blue{S.I. = \dfrac{P \times R \times T}{100}}}}}} \ \bigstar

where,

  • S.I. = Simple Interest
  • P = Principal (Sum of money)
  • R = Rate of Interest
  • T = Time

\bigstar \ {\boxed{\mathsf{\tt{\green{C.I. = P \ \bigg [ \bigg (1 + \dfrac{R}{100} \bigg ) ^n - 1 \bigg ]}}}}} \ \bigstar

where,

  • C.I. = Compound Interest
  • P = Principal (Sum of money)
  • R = Rate of Interest
  • n = Time

{\large{\boxed{\underline{\mathrm{\bf{\blue{Solution:-}}}}}}}

Let Principal be P,

Given :-

  • Rate of interest = 10% p.a.
  • Time = 3 years
  • Difference between Simple Interest and Compound Interest = ₹496

Equation Formed :-

{\boxed{\underline{\mathsf{\tt{\purple{C.I. - S.I. = Rs. \ 496}}}}}}

According to the question by using the formula we get,

\longmapsto {\mathsf{ \bigg ( P \ \bigg [ \bigg (1 + \dfrac{10}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{P \times 10 \times 3}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \ \bigg [ \bigg ( \dfrac{100 + 10}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{P \times 10 \times 3}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \ \bigg [ \bigg ( \dfrac{110}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \ \bigg [ \bigg ( \dfrac{11}{10} \times \dfrac{11}{10} \times \dfrac{11}{10}  \bigg ) - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \ \bigg [\dfrac{1,331}{1,000} - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \ \bigg [\dfrac{1,331 - 1,000}{1,000} \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( P \times \dfrac{331}{1,000} \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( \dfrac{331P}{1,000} \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{30P}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \dfrac{331P}{1,000} }} -  {\mathsf{ \dfrac{300P}{1,000} }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \dfrac{331P - 300P}{1,000} }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \dfrac{31P}{1,000} }} = {\mathsf{Rs. \ 496}}

Value of P,

\longmapsto {\mathsf{P}} = {\mathsf{Rs. \ \dfrac{496 \times 1,000}{31}}}

\longmapsto {\mathsf{P}} = {\mathsf{Rs. \ \dfrac{4,96,000}{31}}}

\Longrightarrow {\mathsf{P}} = {\mathsf{Rs. \ 16,000}}

{\boxed{\boxed{\mathsf{\bf{\blue{Principal}{\orange{ \ is \ }{\purple{Rs. \ 16,000}}}}}}}}

{\large{\boxed{\underline{\mathrm{\bf{\green{Verification:-}}}}}}}

\longmapsto {\mathsf{ \bigg ( 16,000 \ \bigg [ \bigg (1 + \dfrac{10}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{16,000 \times 10 \times 3}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( 16,000 \ \bigg [ \bigg ( \dfrac{100 + 10}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{16,000 \times 10 \times 3}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( 16,000 \ \bigg [ \bigg ( \dfrac{110}{100} \bigg ) ^3 - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{16,000 \times 30}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( 16,000 \ \bigg [\dfrac{1,331}{1,000} - 1 \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{4,80,000}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( 16,000 \ \bigg [\dfrac{1,331 - 1,000}{1,000} \bigg ] \bigg ) }} -  {\mathsf{ \bigg ( \dfrac{4,80,000}{100} \bigg ) }} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ \bigg ( 16,000 \times \dfrac{331}{1,000} \bigg ) }} -  {\mathsf{ {4,800}}} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{5,296}} -  {\mathsf{ {4,800}}} = {\mathsf{Rs. \ 496}}

\longmapsto {\mathsf{ {Rs. \ 496}}} = {\mathsf{Rs. \ 496}}

\Longrightarrow {\mathsf{\bf{LHS = RHS}}}

{\mathsf{Hence, Verfied}} \ {\large{\checkmark}}

Answered by TRISHNADEVI
11

SOLUTION :

 \\  \\

Given :-

 \\

  • Rate of Interest, r = 10% p.a.

  • No. of years, n = 3 years

  • Difference between C.I. and S.I. = Rs. 496

 \\

To Find :-

 \\

  • The sum of money, P = ?

 \\

Formulas Used :-

 \\

 \bigstar \:  \:   \: \boxed {\bold{ \: S.I. =  \frac{ \: P \times r \times n \: }{100}  \: }} \:  \:  \:  \:   \\  \\ \bigstar \:  \:   \: \boxed {\bold{ \: A = P \: (1 +  \dfrac{r}{100}) {}^{n} }} \:  \:  \:  \:  \:   \\  \\   \:  \:  \:  \:  \:  \: \bigstar \:  \:   \: \boxed {\bold{ \:  C.I. = P \:   [(1 +  \dfrac{r}{100} ) {}^{n}  - 1 ]}}

 \\

Calculation of Simple Interest :-

 \\

 \bigstar \:  \: \:  \sf{ S.I. =  \dfrac{ \: P  \times r \times  n  \: }{100} } \\  \\  \sf{ \implies \:  S.I. = \dfrac{P \times 10 \times 3}{100} } \\  \\ \sf{ \implies \:  S.I. =  \dfrac{ \: 30 \: P \: }{100} }  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ \therefore \: \: \underline{ \:  S.I. =  \dfrac{3P}{10} \: } }

 \\

Calculation of Compound Interest :-

 \\

 \bigstar \:  \:  \sf{ C.I. = P \:   [(1 +  \dfrac{r}{100} ) {}^{n}  - 1 ]} \\  \\   \sf{\implies \: C.I. = P \: [(1 +  \dfrac{10}{100} ) {}^{3}  - 1 ]} \\  \\ \sf{\implies \: C.I. = P \: [(1 +  \dfrac{1}{10} ) {}^{3}  - 1 ]}  \\  \\ \sf{\implies \: C.I. = P \: [( \dfrac{10 + 1}{10} ) {}^{3}  - 1 ]}  \\  \\ \sf{\implies \: C.I. = P \: [( \dfrac{11}{10} ) {}^{3}  - 1 ]}  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{\implies \: C.I. = P \: [( \dfrac{1331}{1000} )- 1 ]} \:  \:  \:  \:  \:   \\  \\ \sf{\implies \: C.I. = P \: ( \dfrac{1331 - 1000}{1000})} \\  \\ \sf{\implies \: C.I. = P \: ( \dfrac{331}{1000})}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   \sf{\therefore \:  \: \underline{ \:  C.I. = \frac{ \: 331 \: P \: }{1000 \: }} }

 \\

  • According to Question,

 \\

 \:  \:  \:  \:  \bigstar \:  \:   \: \sf{C.I. - S.I. = 496} \\  \\  \sf{ \implies \:  \dfrac{331P}{1000}  -  \frac{3P}{10}  = 496} \:  \:  \\  \\  \sf{ \implies \:  \dfrac{331P  - 300P}{1000}  = 496} \\   \\  \sf{ \implies \:  \dfrac{31P}{1000}  = 496} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \implies \: 31P = 496 \times 1000} \:  \:  \\  \\  \sf{\implies \: 31P = 496000} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \implies \: P=  \frac{496000}{31} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \:  \therefore \:  \:  \underline{ \: P = 16000 \: }} \:  \:  \:  \:  \:

 \\

  • Hence, the sum of money, P = Rs. 16000.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

VERIFICATION :

 \\  \\

We have :-

 \\

  • Sum of money, P = Rs. 16000

  • Rate of Interest, r = 10%

  • No. of years, n = 3 years.

 \\

To Verify :-

 \\

  • Difference between C.I. and S.I. = Rs. 496

 \\

Now,

 \\

 \:  \: \bigstar \:  \:  \sf{\:  S.I. =  \dfrac{3P}{10} \: }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \dfrac{3 \times 16000}{10} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ =  \dfrac{48000}{10} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 4800}

And,

\:  \: \bigstar \:  \:  \sf{\:  C.I.=  \dfrac{331P}{1000} \: }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \dfrac{331 \times 16000}{1000} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ =  \dfrac{5296000}{1000} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 5296}

 \\

 \sf{ \therefore \:  \: Difference \:  \:  between  \:  \: C.I.  \:  \: and \:  \: S.I. = C.I. - S.I.}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = Rs. \:  5296 - Rs. \:  4800 } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{= Rs. \:  496}

 \\

  • Hence, Verified.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

ANSWER :

 \\

  • ❖ If the difference between the compound interest and the simple interest on a certain sum of money at 10% per annum for 3 years is Rs. 496, then when the interest is compounded annually the sum is Rs. 16000.

Similar questions