Math, asked by pinkuuu3251, 6 months ago

The difference between the semi-perimeter and the sides of a triangle are 16 cm, 14 cm and 10 cm respectively. Find the semi-perimeter of the triangle

Answers

Answered by sumitkumarspl36
0

Answer:

something is wrong here else if you find answer tell me also

Answered by InfiniteSoul
4

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • The difference between the semi-perimeter and the sides of a triangle are 16 cm, 14 cm and 10 cm

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Semi perimeter = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

let the semi perimeter be x

⠀⠀⠀⠀

let the sides of triangle be a , b , c

⠀⠀

Acc. to the question :-

⠀⠀⠀⠀

x - a = 16 --- ( i )

⠀⠀⠀⠀

x - b = 14 --- ( ii )

⠀⠀

x - c = 10 --- ( iii )

⠀⠀⠀⠀

  • Now in eq ( i )

⠀⠀

x - a = 16

⠀⠀⠀⠀

x = 16 + a

⠀⠀

a = x - 16

⠀⠀⠀⠀

  • Now in eq ( ii )

⠀⠀⠀⠀

x - b = 14

⠀⠀⠀⠀

x = 14 + b

⠀⠀⠀⠀

b = x - 14

⠀⠀⠀⠀

  • Now in eq ( iii )

⠀⠀⠀⠀

x - c = 10

⠀⠀⠀⠀

x = 10 + c

⠀⠀

c = 10 - x

⠀⠀⠀⠀

We know that ;

⠀⠀

\sf{\red{\boxed{\bold{Semi\: Perimeter = \dfrac{ a + b + c }{2}}}}}

⠀⠀⠀⠀

Where ;

⠀⠀⠀⠀

a , b , c are the sides of triangle

⠀⠀

  • Putting values in the formulae

⠀⠀⠀⠀

\sf :\implies{\bold{ x =  \dfrac{x - 16 + x - 14 + x - 10 }{2} }}

\sf :\implies{\bold{ x =  \dfrac{x + x + x - 16 - 14 - 10 }{2} }}

⠀⠀⠀⠀

\sf :\implies{\bold{ x =  \dfrac{3x - 40 }{2} }}

\sf :\implies{\bold{2x = 3x - 40  }}

⠀⠀⠀⠀

\sf :\implies{\bold{ -3x + 2x= - 40 }}

⠀⠀⠀⠀

\sf :\implies{\bold{ -x = - 40}}

\sf :\implies{\bold{ x = 40 }}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Required semi perimeter = 40 cm
Similar questions